Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
3 |
+
import torch
|
4 |
+
import theme
|
5 |
+
|
6 |
+
theme = theme.Theme()
|
7 |
+
|
8 |
+
import os
|
9 |
+
import sys
|
10 |
+
sys.path.append('../..')
|
11 |
+
|
12 |
+
#langchain
|
13 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter, CharacterTextSplitter
|
14 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
15 |
+
from langchain.prompts import PromptTemplate
|
16 |
+
from langchain.chains import RetrievalQA
|
17 |
+
from langchain.prompts import ChatPromptTemplate
|
18 |
+
from langchain.schema import StrOutputParser
|
19 |
+
from langchain.schema.runnable import Runnable
|
20 |
+
from langchain.schema.runnable.config import RunnableConfig
|
21 |
+
from langchain.chains import (
|
22 |
+
LLMChain, ConversationalRetrievalChain)
|
23 |
+
from langchain.vectorstores import Chroma
|
24 |
+
from langchain.memory import ConversationBufferMemory
|
25 |
+
from langchain.chains import LLMChain
|
26 |
+
from langchain.prompts.prompt import PromptTemplate
|
27 |
+
from langchain.prompts.chat import ChatPromptTemplate, SystemMessagePromptTemplate
|
28 |
+
from langchain.prompts import SystemMessagePromptTemplate, HumanMessagePromptTemplate, ChatPromptTemplate, MessagesPlaceholder
|
29 |
+
from langchain.document_loaders import PyPDFDirectoryLoader
|
30 |
+
from pydantic import BaseModel, Field
|
31 |
+
from langchain.output_parsers import PydanticOutputParser
|
32 |
+
from langchain_community.llms import HuggingFaceHub
|
33 |
+
from langchain_community.document_loaders import WebBaseLoader
|
34 |
+
|
35 |
+
from pydantic import BaseModel
|
36 |
+
import shutil
|
37 |
+
|
38 |
+
custom_title ="<span style='color: "#92b96a";'>Green Greta</span>"
|
39 |
+
|
40 |
+
|
41 |
+
from huggingface_hub import from_pretrained_keras
|
42 |
+
|
43 |
+
import tensorflow as tf
|
44 |
+
from tensorflow import keras
|
45 |
+
from PIL import Image
|
46 |
+
|
47 |
+
# Cell 1: Image Classification Model
|
48 |
+
model1 = from_pretrained_keras("rocioadlc/EfficientNetV2L")
|
49 |
+
|
50 |
+
# Define class labels
|
51 |
+
class_labels = ['battery',
|
52 |
+
'biological',
|
53 |
+
'brown-glass',
|
54 |
+
'cardboard',
|
55 |
+
'clothes',
|
56 |
+
'green-glass',
|
57 |
+
'metal',
|
58 |
+
'paper',
|
59 |
+
'plastic',
|
60 |
+
'shoes',
|
61 |
+
'trash',
|
62 |
+
'white-glass']
|
63 |
+
|
64 |
+
# Function to predict image label and score
|
65 |
+
def predict_image(input):
|
66 |
+
# Resize the image to the size expected by the model
|
67 |
+
image = input.resize((244, 224))
|
68 |
+
# Convert the image to a NumPy array
|
69 |
+
image_array = tf.keras.preprocessing.image.img_to_array(image)
|
70 |
+
# Normalize the image
|
71 |
+
image_array /= 255.0
|
72 |
+
# Expand the dimensions to create a batch
|
73 |
+
image_array = tf.expand_dims(image_array, 0)
|
74 |
+
# Predict using the model
|
75 |
+
predictions = model1.predict(image_array)
|
76 |
+
|
77 |
+
# Get the predicted class label
|
78 |
+
predicted_class_index = tf.argmax(predictions, axis=1).numpy()[0]
|
79 |
+
predicted_class_label = class_labels[predicted_class_index]
|
80 |
+
|
81 |
+
# Get the confidence score of the predicted class
|
82 |
+
confidence_score = predictions[0][predicted_class_index]
|
83 |
+
|
84 |
+
# Return predicted class label and confidence score
|
85 |
+
return {predicted_class_label: confidence_score}
|
86 |
+
|
87 |
+
|
88 |
+
image_gradio_app = gr.Interface(
|
89 |
+
fn=predict_image,
|
90 |
+
inputs=gr.Image(label="Image", sources=['upload', 'webcam'], type="pil"),
|
91 |
+
outputs=[gr.Label(label="Result")],
|
92 |
+
title=custom_title,
|
93 |
+
theme=theme
|
94 |
+
)
|
95 |
+
|
96 |
+
loader = WebBaseLoader(["https://www.epa.gov/recycle/frequent-questions-recycling", "https://www.whitehorsedc.gov.uk/vale-of-white-horse-district-council/recycling-rubbish-and-waste/lets-get-real-about-recycling/", "https://www.teimas.com/blog/13-preguntas-y-respuestas-sobre-la-ley-de-residuos-07-2022", "https://www.molok.com/es/blog/gestion-de-residuos-solidos-urbanos-rsu-10-dudas-comunes"])
|
97 |
+
data=loader.load()
|
98 |
+
# split documents
|
99 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
100 |
+
chunk_size=1024,
|
101 |
+
chunk_overlap=150,
|
102 |
+
length_function=len
|
103 |
+
)
|
104 |
+
docs = text_splitter.split_documents(data)
|
105 |
+
# define embedding
|
106 |
+
embeddings = HuggingFaceEmbeddings(model_name='thenlper/gte-small')
|
107 |
+
# create vector database from data
|
108 |
+
persist_directory = 'docs/chroma/'
|
109 |
+
|
110 |
+
# Remove old database files if any
|
111 |
+
shutil.rmtree(persist_directory, ignore_errors=True)
|
112 |
+
vectordb = Chroma.from_documents(
|
113 |
+
documents=docs,
|
114 |
+
embedding=embeddings,
|
115 |
+
persist_directory=persist_directory
|
116 |
+
)
|
117 |
+
# define retriever
|
118 |
+
retriever = vectordb.as_retriever(search_kwargs={"k": 2}, search_type="mmr")
|
119 |
+
|
120 |
+
class FinalAnswer(BaseModel):
|
121 |
+
question: str = Field(description="the original question")
|
122 |
+
answer: str = Field(description="the extracted answer")
|
123 |
+
|
124 |
+
# Assuming you have a parser for the FinalAnswer class
|
125 |
+
parser = PydanticOutputParser(pydantic_object=FinalAnswer)
|
126 |
+
|
127 |
+
template = """
|
128 |
+
Your name is Greta and you are a recycling chatbot with the objective to anwer questions from user in English or Spanish /
|
129 |
+
Use the following pieces of context to answer the question /
|
130 |
+
If the question is English answer in English /
|
131 |
+
If the question is Spanish answer in Spanish /
|
132 |
+
Do not mention the word context when you answer a question /
|
133 |
+
Answer the question fully and provide as much relevant detail as possible. Do not cut your response short /
|
134 |
+
Context: {context}
|
135 |
+
User: {question}
|
136 |
+
{format_instructions}
|
137 |
+
"""
|
138 |
+
|
139 |
+
# Create the chat prompt templates
|
140 |
+
sys_prompt = SystemMessagePromptTemplate.from_template(template)
|
141 |
+
qa_prompt = ChatPromptTemplate(
|
142 |
+
messages=[
|
143 |
+
sys_prompt,
|
144 |
+
HumanMessagePromptTemplate.from_template("{question}")],
|
145 |
+
partial_variables={"format_instructions": parser.get_format_instructions()}
|
146 |
+
)
|
147 |
+
llm = HuggingFaceHub(
|
148 |
+
repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1",
|
149 |
+
task="text-generation",
|
150 |
+
model_kwargs={
|
151 |
+
"max_new_tokens": 2000,
|
152 |
+
"top_k": 30,
|
153 |
+
"temperature": 0.1,
|
154 |
+
"repetition_penalty": 1.03
|
155 |
+
},
|
156 |
+
)
|
157 |
+
|
158 |
+
qa_chain = ConversationalRetrievalChain.from_llm(
|
159 |
+
llm = llm,
|
160 |
+
memory = ConversationBufferMemory(llm=llm, memory_key="chat_history", input_key='question', output_key='output'),
|
161 |
+
retriever = retriever,
|
162 |
+
verbose = True,
|
163 |
+
combine_docs_chain_kwargs={'prompt': qa_prompt},
|
164 |
+
get_chat_history = lambda h : h,
|
165 |
+
rephrase_question = False,
|
166 |
+
output_key = 'output',
|
167 |
+
)
|
168 |
+
|
169 |
+
def chat_interface(question,history):
|
170 |
+
result = qa_chain.invoke({'question': question})
|
171 |
+
output_string = result['output']
|
172 |
+
|
173 |
+
# Find the index of the last occurrence of "answer": in the string
|
174 |
+
answer_index = output_string.rfind('"answer":')
|
175 |
+
|
176 |
+
# Extract the substring starting from the "answer": index
|
177 |
+
answer_part = output_string[answer_index + len('"answer":'):].strip()
|
178 |
+
|
179 |
+
# Find the next occurrence of a double quote to get the start of the answer value
|
180 |
+
quote_index = answer_part.find('"')
|
181 |
+
|
182 |
+
# Extract the answer value between double quotes
|
183 |
+
answer_value = answer_part[quote_index + 1:answer_part.find('"', quote_index + 1)]
|
184 |
+
|
185 |
+
return answer_value
|
186 |
+
|
187 |
+
|
188 |
+
chatbot_gradio_app = gr.ChatInterface(
|
189 |
+
fn=chat_interface,
|
190 |
+
title=custom_title
|
191 |
+
)
|
192 |
+
|
193 |
+
banner_tab_content = """
|
194 |
+
<div style="background-color: #d3e3c3; text-align: center; padding: 20px; display: flex; flex-direction: column; align-items: center;">
|
195 |
+
<img src="https://huggingface.co/spaces/rocioadlc/test_4/resolve/main/front_4.jpg" alt="Banner Image" style="width: 50%; max-width: 500px; margin: 0 auto;">
|
196 |
+
<h1 style="font-size: 24px; color: "#92b96a"; margin-top: 20px;">¡Bienvenido a nuestro clasificador de imágenes y chatbot para un reciclaje más inteligente!♻️</h1>
|
197 |
+
<p style="font-size: 16px; color: "#92b96a"; text-align: justify;">¿Alguna vez te has preguntado si puedes reciclar un objeto en particular? ¿O te has sentido abrumado por la cantidad de residuos que generas y no sabes cómo manejarlos de manera más sostenible? ¡Estás en el lugar correcto!</p>
|
198 |
+
<p style="font-size: 16px; color: "#92b96a"; text-align: justify;">Nuestra plataforma combina la potencia de la inteligencia artificial con la comodidad de un chatbot para brindarte respuestas rápidas y precisas sobre qué objetos son reciclables y cómo hacerlo de la manera más eficiente.</p>
|
199 |
+
<p style="font-size: 16px; text-align:center;"><strong><span style="color: "#92b96a";">¿Cómo usarlo?</span></strong>
|
200 |
+
<ul style="list-style-type: disc; text-align: justify; margin-top: 20px; padding-left: 20px;">
|
201 |
+
<li style="font-size: 16px; color: "#92b96a";"><strong><span style="color: "#92b96a";">Green Greta Image Classification:</span></strong> Ve a la pestaña Greta Image Classification y simplemente carga una foto del objeto que quieras reciclar, y nuestro modelo de identificará de qué se trata🕵️♂️ para que puedas desecharlo adecuadamente.</li>
|
202 |
+
<li style="font-size: 16px; color: "#92b96a";"><strong><span style="color: "#92b96a";">Green Greta Chat:</span></strong> ¿Tienes preguntas sobre reciclaje, materiales específicos o prácticas sostenibles? ¡Pregunta a nuestro chatbot en la pestaña Green Greta Chat!📝 Está aquí para responder todas tus preguntas y ayudarte a tomar decisiones más informadas sobre tu reciclaje.</li>
|
203 |
+
</ul>
|
204 |
+
</div>
|
205 |
+
"""
|
206 |
+
banner_tab = gr.Markdown(banner_tab_content)
|
207 |
+
|
208 |
+
# Combine both interfaces into a single app
|
209 |
+
app = gr.TabbedInterface(
|
210 |
+
[banner_tab, image_gradio_app, chatbot_gradio_app],
|
211 |
+
tab_names=["Welcome to Green Greta", "Green Greta Image Classification", "Green Greta Chat"],
|
212 |
+
theme=theme
|
213 |
+
)
|
214 |
+
|
215 |
+
app.queue()
|
216 |
+
app.launch()
|