Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -40,6 +40,7 @@ custom_title ="<span style='color: #66814a;'>Green Greta</span>"
|
|
40 |
|
41 |
|
42 |
from huggingface_hub import from_pretrained_keras
|
|
|
43 |
|
44 |
import tensorflow as tf
|
45 |
from tensorflow import keras
|
@@ -53,17 +54,15 @@ class_labels = ['cardboard', 'glass', 'metal', 'paper', 'plastic', 'trash']
|
|
53 |
|
54 |
# Function to predict image label and score
|
55 |
def predict_image(input):
|
56 |
-
# Resize the image to the size expected by the model
|
57 |
-
|
58 |
-
# Convert the image to a NumPy array
|
59 |
-
image_array = tf.keras.preprocessing.image.img_to_array(image)
|
60 |
# Normalize the image
|
61 |
-
image_array
|
62 |
# Expand the dimensions to create a batch
|
63 |
image_array = tf.expand_dims(image_array, 0)
|
64 |
# Predict using the model
|
65 |
-
predictions =
|
66 |
-
|
67 |
category_scores = {}
|
68 |
for i, class_label in enumerate(class_labels):
|
69 |
category_scores[class_label] = predictions[0][i].item()
|
|
|
40 |
|
41 |
|
42 |
from huggingface_hub import from_pretrained_keras
|
43 |
+
from tensorflow.keras.applications import EfficientNetB0
|
44 |
|
45 |
import tensorflow as tf
|
46 |
from tensorflow import keras
|
|
|
54 |
|
55 |
# Function to predict image label and score
|
56 |
def predict_image(input):
|
57 |
+
# Resize the image to the size expected by the model and convert to numpy array
|
58 |
+
image_array = tf.keras.preprocessing.image.img_to_array(input.resize((224, 244)))
|
|
|
|
|
59 |
# Normalize the image
|
60 |
+
image_array = tf.keras.applications.efficientnet.preprocess_input(image_array)
|
61 |
# Expand the dimensions to create a batch
|
62 |
image_array = tf.expand_dims(image_array, 0)
|
63 |
# Predict using the model
|
64 |
+
predictions = model_tl.predict(image_array)
|
65 |
+
class_labels = ['cardboard', 'glass', 'metal', 'paper', 'plastic', 'trash']
|
66 |
category_scores = {}
|
67 |
for i, class_label in enumerate(class_labels):
|
68 |
category_scores[class_label] = predictions[0][i].item()
|