File size: 9,287 Bytes
eca7db4
 
 
 
 
c6031db
eca7db4
8302a11
eca7db4
 
 
c6031db
eca7db4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bcc9be
eca7db4
 
 
d3da6e2
 
 
 
 
eca7db4
 
989fca5
eca7db4
48c2268
 
 
 
 
 
eca7db4
ec812c4
48c2268
ec812c4
91b8238
 
 
 
 
 
1f19135
1e973c1
1f19135
91b8238
 
 
eca7db4
ce2af5d
48c2268
ce2af5d
48c2268
 
 
 
 
 
 
 
ce2af5d
 
 
 
48c2268
ce2af5d
 
989fca5
eca7db4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cee59f8
eca7db4
 
 
cee59f8
 
 
 
 
 
 
 
 
eca7db4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
989fca5
 
 
 
 
821e5d2
989fca5
 
 
eca7db4
 
821e5d2
eca7db4
 
821e5d2
60387f2
566baff
41eb5f7
fef3ac9
a7ea532
 
 
c4f95d6
f57e570
a7ea532
92e7a52
 
989fca5
 
 
 
eca7db4
989fca5
92e7a52
eca7db4
 
d85f4db
129886d
989fca5
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import gradio as gr
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
import torch
import theme


theme = theme.Theme()
import pydantic
import os
import sys
sys.path.append('../..')
DEVEL = os.environ.get('DEVEL', False)
#langchain
from langchain.text_splitter import RecursiveCharacterTextSplitter, CharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.prompts import PromptTemplate
from langchain.chains import RetrievalQA
from langchain.prompts import ChatPromptTemplate
from langchain.schema import StrOutputParser
from langchain.schema.runnable import Runnable
from langchain.schema.runnable.config import RunnableConfig
from langchain.chains import (
    LLMChain, ConversationalRetrievalChain)
from langchain.vectorstores import Chroma
from langchain.memory import ConversationBufferMemory
from langchain.chains import LLMChain
from langchain.prompts.prompt import PromptTemplate
from langchain.prompts.chat import ChatPromptTemplate, SystemMessagePromptTemplate
from langchain.prompts import SystemMessagePromptTemplate, HumanMessagePromptTemplate, ChatPromptTemplate,  MessagesPlaceholder
from langchain.document_loaders import PyPDFDirectoryLoader
from langchain.pydantic_v1 import BaseModel, Field, validator
from langchain.output_parsers import PydanticOutputParser
from langchain_community.llms import HuggingFaceHub
from langchain_community.document_loaders import WebBaseLoader
from typing import List
from langchain.llms import OpenAI
from langchain.output_parsers import PydanticOutputParser
from langchain.prompts import PromptTemplate
from pydantic import BaseModel, Field
import shutil

title= "Green Greta"

from huggingface_hub import from_pretrained_keras

import tensorflow as tf
from tensorflow import keras
from PIL import Image

# Cell 1: Image Classification Model
model1 = from_pretrained_keras("rocioadlc/EfficientNetV2L")

# Define class labels
class_labels = ['battery',
 'biological',
 'brown-glass',
 'cardboard',
 'clothes',
 'green-glass',
 'metal',
 'paper',
 'plastic',
 'shoes',
 'trash',
 'white-glass']

def predict_image(image_input):
    # Resize the image to the size expected by the model
    image = image_input.resize((244, 224))
    # Convert the image to a NumPy array
    image_array = tf.keras.preprocessing.image.img_to_array(image)
    # Normalize the image
    image_array /= 255.0
    # Expand the dimensions to create a batch
    image_array = tf.expand_dims(image_array, 0)
    # Predict using the model
    predictions = model1.predict(image_array)

    category_scores = {}
    for i, class_label in enumerate(class_labels):
        category_scores[class_label] = predictions[0][i].item()
    
    return category_scores

#Cell 2: Chatbot
loader = WebBaseLoader(["https://www.epa.gov/recycle/frequent-questions-recycling", "https://www.whitehorsedc.gov.uk/vale-of-white-horse-district-council/recycling-rubbish-and-waste/lets-get-real-about-recycling/", "https://www.teimas.com/blog/13-preguntas-y-respuestas-sobre-la-ley-de-residuos-07-2022", "https://www.molok.com/es/blog/gestion-de-residuos-solidos-urbanos-rsu-10-dudas-comunes"])
data=loader.load()
# split documents
text_splitter = RecursiveCharacterTextSplitter(
    chunk_size=1024,
    chunk_overlap=150,
    length_function=len
)
docs = text_splitter.split_documents(data)
# define embedding
embeddings = HuggingFaceEmbeddings(model_name='thenlper/gte-small')
# create vector database from data
persist_directory = 'docs/chroma/'

# Remove old database files if any
shutil.rmtree(persist_directory, ignore_errors=True)
vectordb = Chroma.from_documents(
    documents=docs,
    embedding=embeddings,
    persist_directory=persist_directory
)
# define retriever
retriever = vectordb.as_retriever(search_kwargs={"k": 2}, search_type="mmr")

class Answer(BaseModel):
    question: str = Field(description="the original question")
    answer: str = Field(description="the extracted answer")

# Set up a PydanticOutputParser
parser = PydanticOutputParser(pydantic_object=Answer)

# Create a prompt with format instructions
prompt = PromptTemplate(
    template="Answer the user query.\n{format_instructions}\n{query}\n",
    input_variables=["query"],
    partial_variables={"format_instructions": parser.get_format_instructions()},
)

template = """
Your name is Greta and you are a recycling chatbot with the objective to anwer questions from user in English or Spanish /
Use the following pieces of context to answer the question /
If the question is English answer in English /
If the question is Spanish answer in Spanish /
Do not mention the word context when you answer a question /
Answer the question fully and provide as much relevant detail as possible. Do not cut your response short /
Context: {context}
User: {question}
{format_instructions}
"""

# Create the chat prompt templates
sys_prompt = SystemMessagePromptTemplate.from_template(template)
qa_prompt = ChatPromptTemplate(
    messages=[
        sys_prompt,
        HumanMessagePromptTemplate.from_template("{question}")],
    partial_variables={"format_instructions": parser.get_format_instructions()}
)
llm = HuggingFaceHub(
    repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1",
    task="text-generation",
    model_kwargs={
        "max_new_tokens": 2000,
        "top_k": 30,
        "temperature": 0.1,
        "repetition_penalty": 1.03
    },
)

qa_chain = ConversationalRetrievalChain.from_llm(
    llm = llm,
    memory = ConversationBufferMemory(llm=llm, memory_key="chat_history", input_key='question', output_key='output'),
    retriever = retriever,
    verbose = True,
    combine_docs_chain_kwargs={'prompt': qa_prompt},
    get_chat_history = lambda h : h,
    rephrase_question = False,
    output_key = 'output',
)

def chat_interface(question,history):
    result = qa_chain.invoke({'question': question})
    output_string = result['output']

    # Find the index of the last occurrence of "answer": in the string
    answer_index = output_string.rfind('"answer":')

    # Extract the substring starting from the "answer": index
    answer_part = output_string[answer_index + len('"answer":'):].strip()

    # Find the next occurrence of a double quote to get the start of the answer value
    quote_index = answer_part.find('"')

    # Extract the answer value between double quotes
    answer_value = answer_part[quote_index + 1:answer_part.find('"', quote_index + 1)]
    
    return answer_value



image_gradio_app = gr.Interface(
    fn=predict_image,
    inputs=gr.Image(label="Image", sources=['upload', 'webcam'], type="pil"),
    outputs=[gr.Label(label="Result")],
    title="<span style='color: green;'>Green Greta</span>",
    theme=theme
)

chatbot_gradio_app = gr.ChatInterface(
    fn=chat_interface,
    title="<span style='color: green;'>Green Greta</span>"
)


banner_tab_content = """
<div style="background-color: #d3e3c3; text-align: center; padding: 20px; display: flex; flex-direction: column; align-items: center;">
    <img src="https://huggingface.co/spaces/rocioadlc/test_4/resolve/main/front_4.jpg" alt="Banner Image" style="width: 50%; max-width: 500px; margin: 0 auto;">
    <h1 style="font-size: 24px; color: "#92b96a"; margin-top: 20px;">¡Bienvenido a nuestro clasificador de imágenes y chatbot para un reciclaje más inteligente!♻️</h1>
    <p style="font-size: 16px; color: "#92b96a"; text-align: justify;">¿Alguna vez te has preguntado si puedes reciclar un objeto en particular? ¿O te has sentido abrumado por la cantidad de residuos que generas y no sabes cómo manejarlos de manera más sostenible? ¡Estás en el lugar correcto!</p>
    <p style="font-size: 16px; color: "#92b96a"; text-align: justify;">Nuestra plataforma combina la potencia de la inteligencia artificial con la comodidad de un chatbot para brindarte respuestas rápidas y precisas sobre qué objetos son reciclables y cómo hacerlo de la manera más eficiente.</p>
    <p style="font-size: 16px; text-align:center;"><strong><span style="color: "#92b96a";">¿Cómo usarlo?</span></strong>
    <ul style="list-style-type: disc; text-align: justify; margin-top: 20px; padding-left: 20px;">
        <li style="font-size: 16px; color: "#92b96a";"><strong><span style="color: "#92b96a";">Green Greta Image Classification:</span></strong> Ve a la pestaña Greta Image Classification y simplemente carga una foto del objeto que quieras reciclar, y nuestro modelo de identificará de qué se trata🕵️‍♂️ para que puedas desecharlo adecuadamente.</li>
        <li style="font-size: 16px; color: "#92b96a";"><strong><span style="color: "#92b96a";">Green Greta Chat:</span></strong> ¿Tienes preguntas sobre reciclaje, materiales específicos o prácticas sostenibles? ¡Pregunta a nuestro chatbot en la pestaña Green Greta Chat!📝 Está aquí para responder todas tus preguntas y ayudarte a tomar decisiones más informadas sobre tu reciclaje.</li>
    </ul>
</div>
"""
banner_tab = gr.Markdown(banner_tab_content)

# Combinar ambas interfaces en una sola aplicación con pestañas
app = gr.TabbedInterface(
    [banner_tab, image_gradio_app, chatbot_gradio_app],
    tab_names=["Welcome to Green Greta", "Green Greta Image Classification", "Green Greta Chat"],
    theme=theme
)


app.queue()
app.launch()