rocioadlc commited on
Commit
dce00f5
Β·
verified Β·
1 Parent(s): 2d527a9

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -163
app.py DELETED
@@ -1,163 +0,0 @@
1
- import gradio as gr
2
- from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
3
- import torch
4
- import theme
5
-
6
- theme = theme.Theme()
7
-
8
- import os
9
- import sys
10
- sys.path.append('../..')
11
-
12
- #langchain
13
- from langchain.text_splitter import RecursiveCharacterTextSplitter, CharacterTextSplitter
14
- from langchain.embeddings import HuggingFaceEmbeddings
15
- from langchain.prompts import PromptTemplate
16
- from langchain.chains import RetrievalQA
17
- from langchain.prompts import ChatPromptTemplate
18
- from langchain.schema import StrOutputParser
19
- from langchain.schema.runnable import Runnable
20
- from langchain.schema.runnable.config import RunnableConfig
21
- from langchain.chains import (
22
- LLMChain, ConversationalRetrievalChain)
23
- from langchain.vectorstores import Chroma
24
- from langchain.memory import ConversationBufferMemory
25
- from langchain.chains import LLMChain
26
- from langchain.prompts.prompt import PromptTemplate
27
- from langchain.prompts.chat import ChatPromptTemplate, SystemMessagePromptTemplate
28
- from langchain.prompts import SystemMessagePromptTemplate, HumanMessagePromptTemplate, ChatPromptTemplate, MessagesPlaceholder
29
- from langchain.document_loaders import PyPDFDirectoryLoader
30
- from pydantic import BaseModel, Field
31
- from langchain.output_parsers import PydanticOutputParser
32
- from langchain_community.llms import HuggingFaceHub
33
- from langchain_community.document_loaders import WebBaseLoader
34
-
35
- from pydantic import BaseModel
36
- import shutil
37
-
38
-
39
-
40
- custom_title = "<span style='color: rgb(243, 239, 224);'>Green Greta</span>"
41
-
42
-
43
- # Cell 1: Image Classification Model
44
- image_pipeline = pipeline(task="image-classification", model="guillen/vit-basura-test1")
45
-
46
- def predict_image(input_img):
47
- predictions = image_pipeline(input_img)
48
- return {p["label"]: p["score"] for p in predictions}
49
-
50
- image_gradio_app = gr.Interface(
51
- fn=predict_image,
52
- inputs=gr.Image(label="Image", sources=['upload', 'webcam'], type="pil"),
53
- outputs=[gr.Label(label="Result")],
54
- title=custom_title,
55
- theme=theme
56
- )
57
-
58
- loader = WebBaseLoader(["https://www.epa.gov/recycle/frequent-questions-recycling", "https://www.whitehorsedc.gov.uk/vale-of-white-horse-district-council/recycling-rubbish-and-waste/lets-get-real-about-recycling/", "https://www.teimas.com/blog/13-preguntas-y-respuestas-sobre-la-ley-de-residuos-07-2022", "https://www.molok.com/es/blog/gestion-de-residuos-solidos-urbanos-rsu-10-dudas-comunes"])
59
- data=loader.load()
60
- # split documents
61
- text_splitter = RecursiveCharacterTextSplitter(
62
- chunk_size=1024,
63
- chunk_overlap=150,
64
- length_function=len
65
- )
66
- docs = text_splitter.split_documents(data)
67
- # define embedding
68
- embeddings = HuggingFaceEmbeddings(model_name='thenlper/gte-small')
69
- # create vector database from data
70
- persist_directory = 'docs/chroma/'
71
-
72
- # Remove old database files if any
73
- shutil.rmtree(persist_directory, ignore_errors=True)
74
- vectordb = Chroma.from_documents(
75
- documents=docs,
76
- embedding=embeddings,
77
- persist_directory=persist_directory
78
- )
79
- # define retriever
80
- retriever = vectordb.as_retriever(search_kwargs={"k": 2}, search_type="mmr")
81
-
82
- class FinalAnswer(BaseModel):
83
- question: str = Field(description="the original question")
84
- answer: str = Field(description="the extracted answer")
85
-
86
- # Assuming you have a parser for the FinalAnswer class
87
- parser = PydanticOutputParser(pydantic_object=FinalAnswer)
88
-
89
- template = """
90
- Your name is Greta and you are a recycling chatbot with the objective to anwer questions from user in English or Spanish /
91
- Use the following pieces of context to answer the question /
92
- If the question is English answer in English /
93
- If the question is Spanish answer in Spanish /
94
- Do not mention the word context when you answer a question /
95
- Answer the question fully and provide as much relevant detail as possible. Do not cut your response short /
96
- Context: {context}
97
- User: {question}
98
- {format_instructions}
99
- """
100
-
101
- # Create the chat prompt templates
102
- sys_prompt = SystemMessagePromptTemplate.from_template(template)
103
- qa_prompt = ChatPromptTemplate(
104
- messages=[
105
- sys_prompt,
106
- HumanMessagePromptTemplate.from_template("{question}")],
107
- partial_variables={"format_instructions": parser.get_format_instructions()}
108
- )
109
- llm = HuggingFaceHub(
110
- repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1",
111
- task="text-generation",
112
- model_kwargs={
113
- "max_new_tokens": 2000,
114
- "top_k": 30,
115
- "temperature": 0.1,
116
- "repetition_penalty": 1.03
117
- },
118
- )
119
-
120
- qa_chain = ConversationalRetrievalChain.from_llm(
121
- llm = llm,
122
- memory = ConversationBufferMemory(llm=llm, memory_key="chat_history", input_key='question', output_key='output'),
123
- retriever = retriever,
124
- verbose = True,
125
- combine_docs_chain_kwargs={'prompt': qa_prompt},
126
- get_chat_history = lambda h : h,
127
- rephrase_question = False,
128
- output_key = 'output',
129
- )
130
-
131
- def chat_interface(question,history):
132
- result = qa_chain.invoke({'question': question})
133
- output_string = result['output']
134
-
135
- # Find the index of the last occurrence of "answer": in the string
136
- answer_index = output_string.rfind('"answer":')
137
-
138
- # Extract the substring starting from the "answer": index
139
- answer_part = output_string[answer_index + len('"answer":'):].strip()
140
-
141
- # Find the next occurrence of a double quote to get the start of the answer value
142
- quote_index = answer_part.find('"')
143
-
144
- # Extract the answer value between double quotes
145
- answer_value = answer_part[quote_index + 1:answer_part.find('"', quote_index + 1)]
146
-
147
- return answer_value
148
-
149
-
150
- chatbot_gradio_app = gr.ChatInterface(
151
- fn=chat_interface,
152
- title=custom_title
153
- )
154
-
155
- # Combine both interfaces into a single app
156
- app = gr.TabbedInterface(
157
- [image_gradio_app, chatbot_gradio_app],
158
- tab_names=["Green Greta Image Classification","Green Greta Chat"],
159
- theme=theme
160
- )
161
-
162
- app.queue()
163
- app.launch()