File size: 7,587 Bytes
9346f1c
 
4596a70
2a5f9fb
 
1257fc3
8c49cb6
 
 
 
 
 
 
976f398
df66f6e
 
 
 
 
 
 
 
 
 
9d22eee
 
df66f6e
efeee6d
df66f6e
 
3b1a583
 
8c49cb6
2a73469
10f9b3c
e5d95c8
 
 
 
 
 
 
 
 
d084b26
1989939
d084b26
 
 
 
 
 
 
 
 
 
 
 
 
 
26286b2
3dfaf22
adb0416
2a73469
ffefe11
 
 
 
adb0416
614ee1f
1f60a20
8c49cb6
72a0f0f
1989939
 
 
 
 
 
 
72a0f0f
e3a8804
ef5b51c
512b095
a2790cb
 
72a0f0f
512b095
 
aa7c3f4
adb0416
8c49cb6
 
 
 
 
 
 
 
1989939
ecef2dc
7644705
72a0f0f
efeee6d
ef5b51c
 
 
 
 
 
 
 
 
 
 
adb0416
 
 
ef5b51c
 
 
adb0416
8c49cb6
1989939
8c49cb6
 
 
a2790cb
8c49cb6
2a5f9fb
8c49cb6
3ae1b8c
ab6f548
 
3ae1b8c
dc0413f
3ae1b8c
dc0413f
 
d2179b0
8c49cb6
d2179b0
7644705
f9dbb9d
 
 
 
 
8dab3d7
f9dbb9d
460d762
f9dbb9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8cb7546
f9dbb9d
 
 
 
 
 
 
 
 
 
bdf253e
dcc4e10
 
f9dbb9d
5dc37c0
f9dbb9d
5dc37c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9dbb9d
 
 
 
 
 
d16cee2
10f9b3c
a2790cb
10f9b3c
f9dbb9d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import gradio as gr
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download

from src.display.about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    EVALUATION_QUEUE_TEXT,
    INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT,
    TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
    BENCHMARK_COLS,
    COLS,
    EVAL_COLS,
    EVAL_TYPES,
    NUMERIC_INTERVALS,
    TYPES,
    AutoEvalColumn,
    ModelType,
    fields,
    WeightType,
    Precision
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, TOKEN, QUEUE_REPO, REPO_ID, RESULTS_REPO
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
import time
import requests


def restart_space():
    restart = False
    while not restart:
        try:
            API.restart_space(repo_id=REPO_ID, token=TOKEN)
        except requests.exceptions.ConnectionError as e:
            print("Restart failed. Re-trying...")
            time.sleep(30)
            continue
        restart = True


try:
    print(EVAL_REQUESTS_PATH)
    snapshot_download(
        repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30
    )
except Exception:
    restart_space()
try:
    print(EVAL_RESULTS_PATH)
    snapshot_download(
        repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30
    )
except Exception:
    restart_space()

raw_data, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
leaderboard_df = original_df.copy()

(
    finished_eval_queue_df,
    running_eval_queue_df,
    pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)


# Searching and filtering
def update_table(
        hidden_df: pd.DataFrame,
        columns: list,
        type_query: list,
        precision_query: str,
        size_query: list,
        show_deleted: bool,
        query: str,
):
    filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
    filtered_df = filter_queries(query, filtered_df)
    df = select_columns(filtered_df, columns)
    return df


def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
    return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]


def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
    always_here_cols = [
        AutoEvalColumn.model_type_symbol.name,
        AutoEvalColumn.model.name,
    ]
    # We use COLS to maintain sorting
    filtered_df = df[
        always_here_cols + [c for c in COLS if c in df.columns and c in columns] + [AutoEvalColumn.dummy.name]
        ]
    return filtered_df


def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
    final_df = []
    if query != "":
        queries = [q.strip() for q in query.split(";")]
        for _q in queries:
            _q = _q.strip()
            if _q != "":
                temp_filtered_df = search_table(filtered_df, _q)
                if len(temp_filtered_df) > 0:
                    final_df.append(temp_filtered_df)
        if len(final_df) > 0:
            filtered_df = pd.concat(final_df)
            filtered_df = filtered_df.drop_duplicates(
                subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name]
            )

    return filtered_df


def filter_models(
        df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
) -> pd.DataFrame:
    # Show all models
    if show_deleted:
        filtered_df = df
    else:  # Show only still on the hub models
        filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]

    type_emoji = [t[0] for t in type_query]
    filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
    filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]

    numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
    params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
    mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
    filtered_df = filtered_df.loc[mask]

    return filtered_df


leaderboard_df = filter_models(
    df=leaderboard_df,
    type_query=[t.to_str(" : ") for t in ModelType],
    size_query=list(NUMERIC_INTERVALS.keys()),
    precision_query=[i.value.name for i in Precision],
    show_deleted=False,
)

import unicodedata

def is_valid_unicode(char):
    try:
        unicodedata.name(char)
        return True  # Valid Unicode character
    except ValueError:
        return False  # Invalid Unicode character

def remove_invalid_unicode(input_string):
    if isinstance(input_string, str):
        valid_chars = [char for char in input_string if is_valid_unicode(char)]
        return ''.join(valid_chars)
    else:
        return input_string  # Return non-string values as is

dummy1 = gr.Textbox(visible=False)

hidden_leaderboard_table_for_search = gr.components.Dataframe(
    headers=COLS,
    datatype=TYPES,
    visible=False,
    line_breaks=False,
    interactive=False
)

def display(x, y):
    # Assuming df is your DataFrame
    for column in leaderboard_df.columns:
        if leaderboard_df[column].dtype == 'object':
            leaderboard_df[column] = leaderboard_df[column].apply(remove_invalid_unicode)

    subset_df = leaderboard_df[COLS]
    return subset_df

INTRODUCTION_TEXT = """
This is a copied space from LLM Trustworthy Leaderboard. Instead of displaying
the results as table this space was modified to simply provides a gradio API interface. 
Using the following python script below, users can access the full leaderboard data easily.
```python
# Import dependencies
from gradio_client import Client

# Initialize the Gradio client with the API URL
client = Client("https://rodrigomasini-data-only-llm-trustworthy-leaderboard.hf.space/")

try:
    # Perform the API call
    response = client.predict("","", api_name='/predict')

    # Check if response it's directly accessible
    if len(response) > 0:
        print("Response received!")
        headers = response.get('headers', [])
        data = response.get('data', [])

        print(headers)

        # Remove commenst if you want to download the dataset and save in csv format
        # Specify the path to your CSV file
        #csv_file_path = 'llm-trustworthy-benchmark.csv'

        # Open the CSV file for writing
        #with open(csv_file_path, mode='w', newline='', encoding='utf-8') as file:
        #    writer = csv.writer(file)

            # Write the headers
        #    writer.writerow(headers)

            # Write the data
        #    for row in data:
        #        writer.writerow(row)

        #print(f"Results saved to {csv_file_path}")

    # If the above line prints a string that looks like JSON, you can parse it with json.loads(response)
    # Otherwise, you might need to adjust based on the actual structure of `response`

except Exception as e:
    print(f"An error occurred: {e}")
```
"""

interface = gr.Interface(
    fn=display,
    inputs=[gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text"), dummy1],
    outputs=[hidden_leaderboard_table_for_search]
)

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()

interface.launch()