File size: 10,408 Bytes
9346f1c 1f60a20 9346f1c 1f60a20 db6f218 1f60a20 9346f1c 1f60a20 a460f7a 1f60a20 9346f1c 1f60a20 9346f1c 1f60a20 9346f1c f90ad24 9346f1c 1f60a20 a460f7a db6f218 1f60a20 b2c063a 9346f1c 1f60a20 9346f1c db6f218 07bfeca db6f218 9346f1c a460f7a fcb01e3 9346f1c 1f60a20 db6f218 1f60a20 b2c063a 1f60a20 b2c063a 1f60a20 9346f1c 1f60a20 b2c063a 1f60a20 b2c063a 1f60a20 5cb1426 1f60a20 b2c063a a095268 b2c063a 1f60a20 a095268 b2c063a 1f60a20 9346f1c 1f60a20 07bfeca e4b25b8 a460f7a db6f218 a460f7a db6f218 1f60a20 9346f1c 1f60a20 9346f1c 1f60a20 07bfeca 9346f1c 1f60a20 db6f218 1f60a20 b2c063a db6f218 b2c063a db6f218 b2c063a db6f218 1f60a20 a095268 1f60a20 7eee6bd 1f60a20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
import os
import shutil
import numpy as np
import gradio as gr
from huggingface_hub import Repository, HfApi
from transformers import AutoConfig
import json
from apscheduler.schedulers.background import BackgroundScheduler
import pandas as pd
import datetime
from utils import get_eval_results_dicts, make_clickable_model
# clone / pull the lmeh eval data
H4_TOKEN = os.environ.get("H4_TOKEN", None)
LMEH_REPO = "HuggingFaceH4/lmeh_evaluations"
IS_PUBLIC = bool(os.environ.get("IS_PUBLIC", None))
repo=None
if H4_TOKEN:
print("pulling repo")
# try:
# shutil.rmtree("./evals/")
# except:
# pass
repo = Repository(
local_dir="./evals/", clone_from=LMEH_REPO, use_auth_token=H4_TOKEN, repo_type="dataset"
)
repo.git_pull()
# parse the results
BENCHMARKS = ["arc_challenge", "hellaswag", "hendrycks", "truthfulqa_mc"]
METRICS = ["acc_norm", "acc_norm", "acc_norm", "mc2"]
def load_results(model, benchmark, metric):
file_path = os.path.join("evals", model, f"{model}-eval_{benchmark}.json")
if not os.path.exists(file_path):
return 0.0, None
with open(file_path) as fp:
data = json.load(fp)
accs = np.array([v[metric] for k, v in data["results"].items()])
mean_acc = np.mean(accs)
return mean_acc, data["config"]["model_args"]
COLS = ["Model", "Revision", "Average ⬆️", "ARC (25-shot) ⬆️", "HellaSwag (10-shot) ⬆️", "MMLU (5-shot) ⬆️", "TruthQA (0-shot) ⬆️"]
TYPES = ["markdown","str", "number", "number", "number", "number", "number", ]
if not IS_PUBLIC:
COLS.insert(2, "8bit")
TYPES.insert(2, "bool")
EVAL_COLS = ["model", "revision", "private", "8bit_eval", "is_delta_weight", "status"]
EVAL_TYPES = ["markdown","str", "bool", "bool", "bool", "str"]
def get_leaderboard():
if repo:
print("pulling changes")
repo.git_pull()
all_data = get_eval_results_dicts(IS_PUBLIC)
if not IS_PUBLIC:
gpt4_values = {
"Model":f'<a target="_blank" href=https://arxiv.org/abs/2303.08774 style="color: blue; text-decoration: underline;text-decoration-style: dotted;">gpt4</a>',
"Revision":"tech report",
"8bit":None,
"Average ⬆️":84.3,
"ARC (25-shot) ⬆️":96.3,
"HellaSwag (10-shot) ⬆️":95.3,
"MMLU (5-shot) ⬆️":86.4,
"TruthQA (0-shot) ⬆️":59.0,
}
all_data.append(gpt4_values)
gpt35_values = {
"Model":f'<a target="_blank" href=https://arxiv.org/abs/2303.08774 style="color: blue; text-decoration: underline;text-decoration-style: dotted;">gpt3.5</a>',
"Revision":"tech report",
"8bit":None,
"Average ⬆️":71.9,
"ARC (25-shot) ⬆️":85.2,
"HellaSwag (10-shot) ⬆️":85.5,
"MMLU (5-shot) ⬆️":70.0,
"TruthQA (0-shot) ⬆️":47.0,
}
all_data.append(gpt35_values)
dataframe = pd.DataFrame.from_records(all_data)
dataframe = dataframe.sort_values(by=['Average ⬆️'], ascending=False)
print(dataframe)
dataframe = dataframe[COLS]
return dataframe
def get_eval_table():
if repo:
print("pulling changes for eval")
repo.git_pull()
entries = [entry for entry in os.listdir("evals/eval_requests") if not entry.startswith('.')]
all_evals = []
for entry in entries:
print(entry)
if ".json"in entry:
file_path = os.path.join("evals/eval_requests", entry)
with open(file_path) as fp:
data = json.load(fp)
data["# params"] = "unknown"
data["model"] = make_clickable_model(data["model"])
data["revision"] = data.get("revision", "main")
all_evals.append(data)
else:
# this is a folder
sub_entries = [e for e in os.listdir(f"evals/eval_requests/{entry}") if not e.startswith('.')]
for sub_entry in sub_entries:
file_path = os.path.join("evals/eval_requests", entry, sub_entry)
with open(file_path) as fp:
data = json.load(fp)
#data["# params"] = get_n_params(data["model"])
data["model"] = make_clickable_model(data["model"])
all_evals.append(data)
dataframe = pd.DataFrame.from_records(all_evals)
return dataframe[EVAL_COLS]
leaderboard = get_leaderboard()
eval_queue = get_eval_table()
def is_model_on_hub(model_name, revision) -> bool:
try:
config = AutoConfig.from_pretrained(model_name, revision=revision)
return True
except Exception as e:
print("Could not get the model config from the hub")
print(e)
return False
def add_new_eval(model:str, base_model : str, revision:str, is_8_bit_eval: bool, private:bool, is_delta_weight:bool):
# check the model actually exists before adding the eval
if revision == "":
revision = "main"
if is_delta_weight and not is_model_on_hub(base_model, revision):
print(base_model, "base model not found on hub")
return
if not is_model_on_hub(model, revision):
print(model, "not found on hub")
return
print("adding new eval")
eval_entry = {
"model" : model,
"base_model" : base_model,
"revision" : revision,
"private" : private,
"8bit_eval" : is_8_bit_eval,
"is_delta_weight" : is_delta_weight,
"status" : "PENDING"
}
user_name = ""
model_path = model
if "/" in model:
user_name = model.split("/")[0]
model_path = model.split("/")[1]
OUT_DIR=f"eval_requests/{user_name}"
os.makedirs(OUT_DIR, exist_ok=True)
out_path = f"{OUT_DIR}/{model_path}_eval_request_{private}_{is_8_bit_eval}_{is_delta_weight}.json"
with open(out_path, "w") as f:
f.write(json.dumps(eval_entry))
LMEH_REPO = "HuggingFaceH4/lmeh_evaluations"
api = HfApi()
api.upload_file(
path_or_fileobj=out_path,
path_in_repo=out_path,
repo_id=LMEH_REPO,
token=H4_TOKEN,
repo_type="dataset",
)
def refresh():
return get_leaderboard(), get_eval_table()
block = gr.Blocks()
with block:
with gr.Row():
gr.Markdown(f"""
# 🤗 Open LLM Leaderboard
<font size="4">With the plethora of large language models (LLMs) and chatbots being released week upon week, often with grandiose claims of their performance, it can be hard to filter out the genuine progress that is being made by the open-source community and which model is the current state of the art. The 🤗 Open LLM Leaderboard aims to track, rank and evaluate LLMs and chatbots as they are released. We evaluate models on 4 key benchmarks from the <a href="https://github.com/EleutherAI/lm-evaluation-harness" target="_blank"> Eleuther AI Language Model Evaluation Harness </a>, a unified framework to test generative language models on a large number of different evaluation tasks. A key advantage of this leaderboard is that anyone from the community can submit a model for automated evaluation on the 🤗 GPU cluster, as long as it is a 🤗 Transformers model with weights on the Hub. We also support evaluation of models with delta-weights for non-commercial licensed models, such as LLaMa.
Evaluation is performed against 4 popular benchmarks:
- <a href="https://arxiv.org/abs/1803.05457" target="_blank"> AI2 Reasoning Challenge </a> (25-shot) - a set of grade-school science questions.
- <a href="https://arxiv.org/abs/1905.07830" target="_blank"> HellaSwag </a> (10-shot) - a test of commonsense inference, which is easy for humans (~95%) but challenging for SOTA models.
- <a href="https://arxiv.org/abs/2009.03300" target="_blank"> MMLU </a> (5-shot) - a test to measure a text model's multitask accuracy. The test covers 57 tasks including elementary mathematics, US history, computer science, law, and more.
- <a href="https://arxiv.org/abs/2109.07958" target="_blank"> Truthful QA MC </a> (0-shot) - a benchmark to measure whether a language model is truthful in generating answers to questions.
We chose these benchmarks as they test a variety of reasoning and general knowledge across a wide variety of fields in 0-shot and few-shot settings. </font>
""")
with gr.Row():
leaderboard_table = gr.components.Dataframe(value=leaderboard, headers=COLS,
datatype=TYPES, max_rows=5)
with gr.Row():
gr.Markdown(f"""
# Evaluation Queue for the 🤗 Open LLM Leaderboard, these models will be automatically evaluated on the 🤗 cluster
""")
with gr.Accordion("Evaluation Queue", open=False):
with gr.Row():
eval_table = gr.components.Dataframe(value=eval_queue, headers=EVAL_COLS,
datatype=EVAL_TYPES, max_rows=5)
with gr.Row():
refresh_button = gr.Button("Refresh")
refresh_button.click(refresh, inputs=[], outputs=[leaderboard_table, eval_table])
with gr.Accordion("Submit a new model for evaluation"):
# with gr.Row():
# gr.Markdown(f"""# Submit a new model for evaluation""")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(label="Model name")
revision_name_textbox = gr.Textbox(label="revision", placeholder="main")
with gr.Column():
is_8bit_toggle = gr.Checkbox(False, label="8 bit eval", visible=not IS_PUBLIC)
private = gr.Checkbox(False, label="Private", visible=not IS_PUBLIC)
is_delta_weight = gr.Checkbox(False, label="Delta weights")
base_model_name_textbox = gr.Textbox(label="base model (for delta)")
with gr.Row():
submit_button = gr.Button("Submit Eval")
submit_button.click(add_new_eval, [model_name_textbox, base_model_name_textbox, revision_name_textbox, is_8bit_toggle, private, is_delta_weight])
block.load(refresh, inputs=[], outputs=[leaderboard_table, eval_table])
block.launch() |