Spaces:
Sleeping
Sleeping
Create main.py
Browse files
main.py
ADDED
@@ -0,0 +1,215 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import subprocess
|
3 |
+
from huggingface_hub import hf_hub_download, list_repo_files
|
4 |
+
import gradio as gr
|
5 |
+
from typing import Callable
|
6 |
+
import base64
|
7 |
+
import torch
|
8 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
9 |
+
from threading import Thread
|
10 |
+
from transformers import TextIteratorStreamer
|
11 |
+
|
12 |
+
|
13 |
+
def get_fn(model_path: str, **model_kwargs):
|
14 |
+
"""Create a chat function with the specified model."""
|
15 |
+
|
16 |
+
# Initialize tokenizer and model
|
17 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
18 |
+
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
|
19 |
+
|
20 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
21 |
+
|
22 |
+
# Simple flash-attention installation attempt
|
23 |
+
try:
|
24 |
+
subprocess.run(
|
25 |
+
'pip install flash-attn --no-build-isolation',
|
26 |
+
env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"},
|
27 |
+
shell=True,
|
28 |
+
check=True
|
29 |
+
)
|
30 |
+
# Try loading model with flash attention
|
31 |
+
model = AutoModelForCausalLM.from_pretrained(
|
32 |
+
model_path,
|
33 |
+
device_map="auto",
|
34 |
+
quantization_config=quantization_config,
|
35 |
+
attn_implementation="flash_attention_2",
|
36 |
+
)
|
37 |
+
except Exception as e:
|
38 |
+
print(f"Flash Attention failed, falling back to default attention: {str(e)}")
|
39 |
+
# Fallback to default attention implementation
|
40 |
+
model = AutoModelForCausalLM.from_pretrained(
|
41 |
+
model_path,
|
42 |
+
torch_dtype= torch.bfloat16
|
43 |
+
device_map="auto",
|
44 |
+
quantization_config=quantization_config,
|
45 |
+
)
|
46 |
+
|
47 |
+
def predict(
|
48 |
+
message: str,
|
49 |
+
history,
|
50 |
+
system_prompt: str,
|
51 |
+
temperature: float,
|
52 |
+
max_new_tokens: int,
|
53 |
+
top_k: int,
|
54 |
+
repetition_penalty: float,
|
55 |
+
top_p: float
|
56 |
+
):
|
57 |
+
try:
|
58 |
+
# Format conversation with ChatML format
|
59 |
+
instruction = '<|im_start|>system\n' + system_prompt + '\n<|im_end|>\n'
|
60 |
+
for user_msg, assistant_msg in history:
|
61 |
+
instruction += f'<|im_start|>user\n{user_msg}\n<|im_end|>\n<|im_start|>assistant\n{assistant_msg}\n<|im_end|>\n'
|
62 |
+
instruction += f'<|im_start|>user\n{message}\n<|im_end|>\n<|im_start|>assistant\n'
|
63 |
+
|
64 |
+
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
65 |
+
enc = tokenizer(instruction, return_tensors="pt", padding=True, truncation=True)
|
66 |
+
input_ids, attention_mask = enc.input_ids, enc.attention_mask
|
67 |
+
|
68 |
+
# Truncate if needed
|
69 |
+
if input_ids.shape[1] > 8192: # Using n_ctx from original
|
70 |
+
input_ids = input_ids[:, -8192:]
|
71 |
+
attention_mask = attention_mask[:, -8192:]
|
72 |
+
|
73 |
+
generate_kwargs = dict(
|
74 |
+
input_ids=input_ids.to(device),
|
75 |
+
attention_mask=attention_mask.to(device),
|
76 |
+
streamer=streamer,
|
77 |
+
do_sample=True,
|
78 |
+
temperature=temperature,
|
79 |
+
max_new_tokens=max_new_tokens,
|
80 |
+
top_k=top_k,
|
81 |
+
repetition_penalty=repetition_penalty,
|
82 |
+
top_p=top_p
|
83 |
+
)
|
84 |
+
|
85 |
+
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
86 |
+
t.start()
|
87 |
+
|
88 |
+
response_text = ""
|
89 |
+
for new_token in streamer:
|
90 |
+
if new_token in ["<|endoftext|>", "<|im_end|>"]:
|
91 |
+
break
|
92 |
+
response_text += new_token
|
93 |
+
yield response_text.strip()
|
94 |
+
|
95 |
+
if not response_text.strip():
|
96 |
+
yield "I apologize, but I was unable to generate a response. Please try again."
|
97 |
+
|
98 |
+
except Exception as e:
|
99 |
+
print(f"Error during generation: {str(e)}")
|
100 |
+
yield f"An error occurred: {str(e)}"
|
101 |
+
|
102 |
+
return predict
|
103 |
+
|
104 |
+
|
105 |
+
def get_image_base64(url: str, ext: str):
|
106 |
+
with open(url, "rb") as image_file:
|
107 |
+
encoded_string = base64.b64encode(image_file.read()).decode('utf-8')
|
108 |
+
return "data:image/" + ext + ";base64," + encoded_string
|
109 |
+
|
110 |
+
|
111 |
+
def handle_user_msg(message: str):
|
112 |
+
if type(message) is str:
|
113 |
+
return message
|
114 |
+
elif type(message) is dict:
|
115 |
+
if message["files"] is not None and len(message["files"]) > 0:
|
116 |
+
ext = os.path.splitext(message["files"][-1])[1].strip(".")
|
117 |
+
if ext.lower() in ["png", "jpg", "jpeg", "gif", "pdf"]:
|
118 |
+
encoded_str = get_image_base64(message["files"][-1], ext)
|
119 |
+
else:
|
120 |
+
raise NotImplementedError(f"Not supported file type {ext}")
|
121 |
+
content = [
|
122 |
+
{"type": "text", "text": message["text"]},
|
123 |
+
{
|
124 |
+
"type": "image_url",
|
125 |
+
"image_url": {
|
126 |
+
"url": encoded_str,
|
127 |
+
}
|
128 |
+
},
|
129 |
+
]
|
130 |
+
else:
|
131 |
+
content = message["text"]
|
132 |
+
return content
|
133 |
+
else:
|
134 |
+
raise NotImplementedError
|
135 |
+
|
136 |
+
|
137 |
+
def get_interface_args(pipeline):
|
138 |
+
if pipeline == "chat":
|
139 |
+
inputs = None
|
140 |
+
outputs = None
|
141 |
+
|
142 |
+
def preprocess(message, history):
|
143 |
+
messages = []
|
144 |
+
files = None
|
145 |
+
for user_msg, assistant_msg in history:
|
146 |
+
if assistant_msg is not None:
|
147 |
+
messages.append({"role": "user", "content": handle_user_msg(user_msg)})
|
148 |
+
messages.append({"role": "assistant", "content": assistant_msg})
|
149 |
+
else:
|
150 |
+
files = user_msg
|
151 |
+
if type(message) is str and files is not None:
|
152 |
+
message = {"text":message, "files":files}
|
153 |
+
elif type(message) is dict and files is not None:
|
154 |
+
if message["files"] is None or len(message["files"]) == 0:
|
155 |
+
message["files"] = files
|
156 |
+
messages.append({"role": "user", "content": handle_user_msg(message)})
|
157 |
+
return {"messages": messages}
|
158 |
+
|
159 |
+
postprocess = lambda x: x
|
160 |
+
else:
|
161 |
+
# Add other pipeline types when they will be needed
|
162 |
+
raise ValueError(f"Unsupported pipeline type: {pipeline}")
|
163 |
+
return inputs, outputs, preprocess, postprocess
|
164 |
+
|
165 |
+
|
166 |
+
def get_pipeline(model_name):
|
167 |
+
# Determine the pipeline type based on the model name
|
168 |
+
# For simplicity, assuming all models are chat models at the moment
|
169 |
+
return "chat"
|
170 |
+
|
171 |
+
|
172 |
+
def get_model_path(name: str = None, model_path: str = None) -> str:
|
173 |
+
"""Get the local path to the model."""
|
174 |
+
if model_path:
|
175 |
+
return model_path
|
176 |
+
|
177 |
+
if name:
|
178 |
+
if "/" in name:
|
179 |
+
return name # Return HF model ID directly
|
180 |
+
else:
|
181 |
+
# You could maintain a mapping of friendly names to HF model IDs
|
182 |
+
model_mapping = {
|
183 |
+
# Add any default model mappings here
|
184 |
+
"example-model": "organization/model-name"
|
185 |
+
}
|
186 |
+
if name not in model_mapping:
|
187 |
+
raise ValueError(f"Unknown model name: {name}")
|
188 |
+
return model_mapping[name]
|
189 |
+
|
190 |
+
raise ValueError("Either name or model_path must be provided")
|
191 |
+
|
192 |
+
|
193 |
+
def registry(name: str = None, model_path: str = None, **kwargs):
|
194 |
+
"""Create a Gradio Interface with similar styling and parameters."""
|
195 |
+
|
196 |
+
model_path = get_model_path(name, model_path)
|
197 |
+
fn = get_fn(model_path, **kwargs)
|
198 |
+
|
199 |
+
interface = gr.ChatInterface(
|
200 |
+
fn=fn,
|
201 |
+
additional_inputs_accordion=gr.Accordion("⚙️ Parameters", open=False),
|
202 |
+
additional_inputs=[
|
203 |
+
gr.Textbox(
|
204 |
+
"You are a helpful AI assistant.",
|
205 |
+
label="System prompt"
|
206 |
+
),
|
207 |
+
gr.Slider(0, 1, 0.7, label="Temperature"),
|
208 |
+
gr.Slider(128, 4096, 1024, label="Max new tokens"),
|
209 |
+
gr.Slider(1, 80, 40, label="Top K sampling"),
|
210 |
+
gr.Slider(0, 2, 1.1, label="Repetition penalty"),
|
211 |
+
gr.Slider(0, 1, 0.95, label="Top P sampling"),
|
212 |
+
],
|
213 |
+
)
|
214 |
+
|
215 |
+
return interface
|