File size: 1,733 Bytes
e008ae1
7843ac8
2995eda
 
f5ab0cc
 
2995eda
f5ab0cc
 
 
 
 
 
 
 
 
 
 
cd04c80
f5ab0cc
900693a
2995eda
4305b4c
 
2995eda
 
 
 
 
 
 
 
 
 
 
 
 
9ebdc85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import streamlit as st
from transformers import AutoTokenizer, TextStreamer, pipeline
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
import time
from huggingface_hub import snapshot_download
import os

# Define pretrained and quantized model directories
pretrained_model_dir = "FPHam/Jackson_The_Formalizer_V2_13b_GPTQ"
cwd = os.getcwd()

quantized_model_dir = cwd + "/Jackson2-4bit-128g-GPTQ"

# Create the cache directory if it doesn't exist
os.makedirs(quantized_model_dir, exist_ok=True)

snapshot_download(repo_id=pretrained_model_dir, local_dir=quantized_model_dir, local_dir_use_symlinks=True)

st.write(f'{os.listdir(quantized_model_dir)}')
model_name_or_path = quantized_model_dir
model_basename = "Jackson2-4bit-128g-GPTQ"

os.environ['CUDA_VISIBLE_DEVICES']='0'

use_triton = False

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True, legacy=False)

model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
        model_basename=model_basename,
        use_safetensors=True,
        trust_remote_code=True,
        device="cuda:0",
        use_triton=use_triton,
        quantize_config=None)


user_input = st.text_input("Input a phrase")

prompt_template = f'USER: {user_input}\nASSISTANT:'

if st.button("Generate the prompt"):

    inputs_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
    streamer = TextStreamer(tokenizer)
    pipe = pipeline(
        "text-generation",
        model=model,
        tokenizer=tokenizer,
        streamer=streamer,
        max_new_tokens=512,
        temperature=0.2,
        top_p=0.95,
        repetition_penalty=1.15
        )
    pipe(prompt_template)
    st.write(pipe(prompt_template)[0]['generated_text'])