Spaces:
Paused
Paused
import streamlit as st | |
from transformers import AutoTokenizer | |
from auto_gptq import AutoGPTQForCausalLM | |
import os | |
import threading | |
cwd = os.getcwd() | |
cachedir = cwd+'/cache' | |
# Assuming the rest of your setup code is correct and `local_folder` is properly set up | |
class QuantizedModel: | |
def __init__(self, model_dir): | |
self.tokenizer = AutoTokenizer.from_pretrained(model_dir, use_fast=False) | |
self.model = AutoGPTQForCausalLM.from_quantized( | |
model_dir, | |
use_safetensors=True, | |
strict=False, | |
device="cuda:0", | |
use_triton=False | |
) | |
def generate(self, prompt, max_new_tokens=512, temperature=0.1, top_p=0.95, repetition_penalty=1.15): | |
inputs = self.tokenizer(prompt, return_tensors="pt") | |
outputs = self.model.generate( | |
input_ids=inputs['input_ids'].to("cuda:0"), | |
attention_mask=inputs['attention_mask'].to("cuda:0"), | |
max_length=max_new_tokens + inputs['input_ids'].size(-1), | |
temperature=temperature, | |
top_p=top_p, | |
repetition_penalty=repetition_penalty | |
) | |
return self.tokenizer.decode(outputs[0], skip_special_tokens=True) | |
quantized_model = QuantizedModel(local_folder) | |
user_input = st.text_input("Input a phrase") | |
prompt_template = f'USER: {user_input}\nASSISTANT:' | |
# Generate output when the "Generate" button is pressed | |
if st.button("Generate the prompt"): | |
output = quantized_model.generate(prompt_template) | |
st.text_area("Prompt", value=output) | |