Spaces:
Paused
Paused
import streamlit as st | |
from transformers import AutoTokenizer, TextStreamer, pipeline | |
from auto_gptq import AutoGPTQForCausalLM | |
from huggingface_hub import snapshot_download | |
import os | |
import gc | |
# Define pretrained and quantized model directories | |
pretrained_model_dir = "FPHam/Jackson_The_Formalizer_V2_13b_GPTQ" | |
cwd = os.getcwd() | |
quantized_model_dir = cwd + "/Jackson2-4bit-128g-GPTQ" | |
# Check if the model directory is empty (i.e., model not downloaded yet) | |
if not os.path.exists(quantized_model_dir) or not os.listdir(quantized_model_dir): | |
# Create the cache directory if it doesn't exist | |
os.makedirs(quantized_model_dir, exist_ok=True) | |
snapshot_download(repo_id=pretrained_model_dir, local_dir=quantized_model_dir, local_dir_use_symlinks=True) | |
st.write(f'{os.listdir(quantized_model_dir)}') | |
model_name_or_path = quantized_model_dir | |
model_basename = "Jackson2-4bit-128g-GPTQ" | |
#os.environ['CUDA_VISIBLE_DEVICES'] = '0' | |
# Before allocating or loading the model, clear up memory | |
gc.collect() | |
torch.cuda.empty_cache() | |
use_triton = False | |
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True, legacy=False) | |
model = AutoGPTQForCausalLM.from_quantized( | |
model_name_or_path, | |
model_basename=model_basename, | |
use_safetensors=True, | |
trust_remote_code=True, | |
device="cuda:0", | |
use_triton=use_triton, | |
quantize_config=None | |
) | |
user_input = st.text_input("Input a phrase") | |
prompt_template = f'USER: {user_input}\nASSISTANT:' | |
if st.button("Generate the prompt"): | |
input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda() | |
streamer = TextStreamer(tokenizer) | |
pipe = pipeline( | |
"text-generation", | |
model=model, | |
tokenizer=tokenizer, | |
streamer=streamer, | |
max_new_tokens=512, | |
temperature=0.2, | |
top_p=0.95, | |
repetition_penalty=1.15 | |
) | |
# You had called pipe(prompt_template) twice which was unnecessary. Just call it once. | |
output = pipe(prompt_template) | |
st.write(output[0]['generated_text']) |