rephrase / app_v2.py
rodrigomasini's picture
Update app_v2.py
cd664b9
raw
history blame
1.59 kB
import streamlit as st
from transformers import AutoTokenizer
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
import os
# Define pretrained and quantized model directories
pretrained_model_dir = "FPHam/Jackson_The_Formalizer_V2_13b_GPTQ"
quantized_model_dir = "./Jackson2-4bit-128g-GPTQ"
# Create the cache directory if it doesn't exist
os.makedirs(quantized_model_dir, exist_ok=True)
# Quantization configuration
quantize_config = BaseQuantizeConfig(bits=4, group_size=128, desc_act=False)
# Load the model using from_quantized
model = AutoGPTQForCausalLM.from_quantized(
pretrained_model_dir,
use_safetensors=True,
strict=False,
model_basename='Jackson2-4bit-128g-GPTQ.safetensors',
device="cuda:0",
trust_remote_code=True,
use_triton=False,
quantize_config=quantize_config
)
model.save_quantized(quantized_model_dir)
# Load the tokenizer
tokenizer = AutoTokenizer.from_pretrained(quantized_model_dir, use_fast=True)
model_for_inference = AutoGPTQForCausalLM.from_pretrained(quantized_model_dir)
# Starting Streamlit app
st.title("AutoGPTQ Streamlit App")
user_input = st.text_input("Input a phrase")
# Generate output when the "Generate" button is pressed
if st.button("Generate"):
inputs = tokenizer(user_input, return_tensors="pt")
outputs = model.generate(
**inputs,
max_length=512 + inputs['input_ids'].size(-1),
temperature=0.1,
top_p=0.95,
repetition_penalty=1.15
)
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
st.text(generated_text)