Spaces:
Paused
Paused
Commit
·
37f4fec
1
Parent(s):
70d3e9b
Update app_v3.py
Browse files
app_v3.py
CHANGED
@@ -7,38 +7,37 @@ import gc
|
|
7 |
|
8 |
# Define pretrained and quantized model directories
|
9 |
pretrained_model_dir = "FPHam/Jackson_The_Formalizer_V2_13b_GPTQ"
|
10 |
-
cwd = os.getcwd()
|
11 |
|
12 |
-
quantized_model_dir = cwd + "/Jackson2-4bit-128g-GPTQ"
|
13 |
|
14 |
# Check if the model directory is empty (i.e., model not downloaded yet)
|
15 |
-
if not os.path.exists(quantized_model_dir) or not os.listdir(quantized_model_dir):
|
16 |
# Create the cache directory if it doesn't exist
|
17 |
-
os.makedirs(quantized_model_dir, exist_ok=True)
|
18 |
-
snapshot_download(repo_id=pretrained_model_dir, local_dir=quantized_model_dir, local_dir_use_symlinks=True)
|
19 |
|
20 |
-
st.write(f'{os.listdir(quantized_model_dir)}')
|
21 |
-
model_name_or_path = quantized_model_dir
|
22 |
-
model_basename = "Jackson2-4bit-128g-GPTQ"
|
23 |
|
24 |
#os.environ['CUDA_VISIBLE_DEVICES'] = '0'
|
25 |
|
26 |
# Before allocating or loading the model, clear up memory
|
27 |
-
gc.collect()
|
28 |
-
torch.cuda.empty_cache()
|
29 |
|
30 |
use_triton = False
|
31 |
|
32 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True, legacy=False)
|
33 |
-
|
34 |
model = AutoGPTQForCausalLM.from_quantized(
|
35 |
-
|
36 |
-
model_basename=model_basename,
|
37 |
use_safetensors=True,
|
38 |
-
trust_remote_code=True,
|
39 |
device="cuda:0",
|
40 |
-
use_triton=use_triton,
|
41 |
-
quantize_config=None
|
42 |
)
|
43 |
|
44 |
user_input = st.text_input("Input a phrase")
|
@@ -46,18 +45,19 @@ user_input = st.text_input("Input a phrase")
|
|
46 |
prompt_template = f'USER: {user_input}\nASSISTANT:'
|
47 |
|
48 |
if st.button("Generate the prompt"):
|
49 |
-
|
50 |
-
streamer = TextStreamer(tokenizer)
|
51 |
-
pipe = pipeline(
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
)
|
61 |
-
|
62 |
-
output =
|
63 |
-
st.
|
|
|
|
7 |
|
8 |
# Define pretrained and quantized model directories
|
9 |
pretrained_model_dir = "FPHam/Jackson_The_Formalizer_V2_13b_GPTQ"
|
10 |
+
#cwd = os.getcwd()
|
11 |
|
12 |
+
#quantized_model_dir = cwd + "/Jackson2-4bit-128g-GPTQ"
|
13 |
|
14 |
# Check if the model directory is empty (i.e., model not downloaded yet)
|
15 |
+
#if not os.path.exists(quantized_model_dir) or not os.listdir(quantized_model_dir):
|
16 |
# Create the cache directory if it doesn't exist
|
17 |
+
# os.makedirs(quantized_model_dir, exist_ok=True)
|
18 |
+
# snapshot_download(repo_id=pretrained_model_dir, local_dir=quantized_model_dir, local_dir_use_symlinks=True)
|
19 |
|
20 |
+
#st.write(f'{os.listdir(quantized_model_dir)}')
|
21 |
+
#model_name_or_path = quantized_model_dir
|
22 |
+
#model_basename = "Jackson2-4bit-128g-GPTQ"
|
23 |
|
24 |
#os.environ['CUDA_VISIBLE_DEVICES'] = '0'
|
25 |
|
26 |
# Before allocating or loading the model, clear up memory
|
27 |
+
#gc.collect()
|
28 |
+
#torch.cuda.empty_cache()
|
29 |
|
30 |
use_triton = False
|
31 |
|
32 |
+
#tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True, legacy=False)
|
33 |
+
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_dir, use_fast=True)
|
34 |
model = AutoGPTQForCausalLM.from_quantized(
|
35 |
+
pretrained_model_dir,
|
36 |
+
#model_basename=model_basename,
|
37 |
use_safetensors=True,
|
|
|
38 |
device="cuda:0",
|
39 |
+
#use_triton=use_triton,
|
40 |
+
#quantize_config=None
|
41 |
)
|
42 |
|
43 |
user_input = st.text_input("Input a phrase")
|
|
|
45 |
prompt_template = f'USER: {user_input}\nASSISTANT:'
|
46 |
|
47 |
if st.button("Generate the prompt"):
|
48 |
+
inputs = tokenizer(prompt_template, return_tensors='pt')
|
49 |
+
#streamer = TextStreamer(tokenizer)
|
50 |
+
#pipe = pipeline(
|
51 |
+
# "text-generation",
|
52 |
+
# model=model,
|
53 |
+
# tokenizer=tokenizer,
|
54 |
+
# streamer=streamer,
|
55 |
+
# max_new_tokens=512,
|
56 |
+
# temperature=0.2,
|
57 |
+
# top_p=0.95,
|
58 |
+
# repetition_penalty=1.15
|
59 |
+
#)
|
60 |
+
|
61 |
+
output = model.generate(**prompt_template)
|
62 |
+
st.markdown(f"tokenizer.decode(output)")
|
63 |
+
#st.write(output[0]['generated_text'])
|