File size: 7,377 Bytes
10da927
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9987dc1
 
10da927
 
 
 
 
 
 
1cc9d33
10da927
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9987dc1
c623d28
8d7b187
10da927
 
 
 
 
 
9987dc1
10da927
 
9987dc1
10da927
 
8d7b187
 
10da927
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9987dc1
 
 
 
 
 
10da927
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9987dc1
10da927
 
 
 
 
9987dc1
10da927
 
 
9987dc1
10da927
 
 
 
9987dc1
10da927
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d7b187
10da927
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9987dc1
10da927
 
 
 
9987dc1
10da927
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import asyncio
import os
import time
import glob
import gradio as gr
from dotenv import load_dotenv
from langchain.chat_models import ChatOpenAI
from langchain.embeddings import OpenAIEmbeddings

from grader import Grader
from ingest import ingest_canvas_discussions
from utils import GraderQA

load_dotenv()

pickle_file = "vector_stores/canvas-discussions.pkl"
index_file = "vector_stores/canvas-discussions.index"

grading_model = 'gpt-4'
qa_model = 'gpt-3.5-turbo-16k'

llm = ChatOpenAI(model_name=qa_model, temperature=0, verbose=True)
embeddings = OpenAIEmbeddings(model='text-embedding-ada-002')

grader = None
grader_qa = None


def add_text(history, text):
    print("Question asked: " + text)
    get_grading_status(history)
    response = run_model(text)
    history = history + [(text, response)]
    print(history)
    return history, ""


def run_model(text):
    global grader, grader_qa
    start_time = time.time()
    print("start time:" + str(start_time))
    response = grader_qa.chain(text)
    sources = []
    for document in response['source_documents']:
        sources.append(str(document.metadata))
        print(sources)

    source = ','.join(set(sources))
    response = response['answer'] + '\nSources: ' + source
    end_time = time.time()
    # # If response contains string `SOURCES:`, then add a \n before `SOURCES`
    # if "SOURCES:" in response:
    #     response = response.replace("SOURCES:", "\nSOURCES:")
    response = response + "\n\n" + "Time taken: " + str(end_time - start_time)
    print(response)
    print("Time taken: " + str(end_time - start_time))
    return response


def set_model(history):
    history = get_first_message(history)
    return history

def ingest(url, canvas_api_key, history):
    global grader, llm, embeddings
    text = f"Downloaded discussion data from {url} to start grading"
    ingest_canvas_discussions(url, canvas_api_key)
    grader = Grader(grading_model)
    response = "Ingested canvas data successfully"
    history = history + [(text, response)]
    return get_grading_status(history)

def start_grading(url, canvas_api_key, history):
    global grader, grader_qa
    text = f"Start grading discussions from {url}"
    if not url or not canvas_api_key:
        response = "Please enter all the fields to initiate grading"
    elif grader:
        if grader.llm.model_name != grading_model:
            grader = Grader(grading_model)
        # Create a new event loop
        loop = asyncio.new_event_loop()
        asyncio.set_event_loop(loop)
        try:
            # Use the event loop to run the async function
            loop.run_until_complete(grader.run_chain())
            grader_qa = GraderQA(grader, embeddings)
            response = "Grading done"
        finally:
            # Close the loop after use
            loop.close()
    else:
        response = "Please ingest data before grading"
    history = history + [(text, response)]
    return history


def start_downloading():
    files = glob.glob("output/*.csv")
    if files:
        file = files[0]
        return gr.outputs.File(file)
    else:
        return "File not found"


def get_first_message(history):
    global grader_qa
    history = [(None,
                'Get feedback on your canvas discussions. Add your discussion url and get your discussions graded in instantly.')]
    history = get_grading_status(history)
    return history


def get_grading_status(history):
    global grader, grader_qa
    # Check if grading is complete
    if os.path.isdir('output') and len(glob.glob("docs/*.json")) > 0 and len(glob.glob("docs/*.html")) > 0:
        if not grader:
            grader = Grader(qa_model)
            grader_qa = GraderQA(grader, embeddings)
        elif not grader_qa:
            grader_qa = GraderQA(grader, embeddings)
        history = history + [(None, 'Grading is already complete. You can now ask questions')]
        enable_fields(False, False, False, False, True, True, True)
    # Check if data is ingested
    elif len(glob.glob("docs/*.json")) > 0 and len(glob.glob("docs/*.html")):
        if not grader_qa:
            grader = Grader(qa_model)
        history = history + [(None, 'Canvas data is already ingested. You can grade discussions now')]
        enable_fields(False, False, False, True, True, False, False)
    else:
        history = history + [(None, 'Please ingest data and start grading')]
        url.disabled = True
        enable_fields(True, True, True, True, True, False, False)
    return history


# handle enable/disable of fields
def enable_fields(url_status, canvas_api_key_status, submit_status, grade_status,
                  download_status, chatbot_txt_status, chatbot_btn_status):
    url.interactive = url_status
    canvas_api_key.interactive = canvas_api_key_status
    submit.interactive = submit_status
    grade.interactive = grade_status
    download.interactive = download_status
    txt.interactive = chatbot_txt_status
    ask.interactive = chatbot_btn_status
    if not chatbot_txt_status:
        txt.placeholder = "Please grade discussions first"
    else:
        txt.placeholder = "Ask a question"
    if not url_status:
        url.placeholder = "Data already ingested"
    if not canvas_api_key_status:
        canvas_api_key.placeholder = "Data already ingested"


def bot(history):
    return history


with gr.Blocks() as demo:
    gr.Markdown(f"<h2><center>{'Canvas Discussion Grading With Feedback'}</center></h2>")

    with gr.Row():
        url = gr.Textbox(
            label="Canvas Discussion URL",
            placeholder="Enter your Canvas Discussion URL"
        )

        canvas_api_key = gr.Textbox(
            label="Canvas API Key",
            placeholder="Enter your Canvas API Key", type="password"
        )

    with gr.Row():
        submit = gr.Button(value="Submit", variant="secondary", )
        grade = gr.Button(value="Grade", variant="secondary")
        download = gr.Button(value="Download", variant="secondary")
        reset = gr.Button(value="Reset", variant="secondary")

    chatbot = gr.Chatbot([], label="Chat with grading results", elem_id="chatbot", height=400)

    with gr.Row():
        with gr.Column(scale=3):
            txt = gr.Textbox(
                label="Ask questions about how students did on the discussion",
                placeholder="Enter text and press enter, or upload an image", lines=1
            )
        ask = gr.Button(value="Ask", variant="secondary", scale=1)

    chatbot.value = get_first_message([])
    submit.click(ingest, inputs=[url, canvas_api_key, chatbot], outputs=[chatbot],
                 postprocess=False).then(
        bot, chatbot, chatbot
    )

    grade.click(start_grading, inputs=[url, canvas_api_key, chatbot], outputs=[chatbot],
                postprocess=False).then(
        bot, chatbot, chatbot
    )

    download.click(start_downloading, inputs=[], outputs=[chatbot], postprocess=False).then(
        bot, chatbot, chatbot
    )

    txt.submit(add_text, [chatbot, txt], [chatbot, txt], postprocess=False).then(
        bot, chatbot, chatbot
    )

    ask.click(add_text, inputs=[chatbot, txt], outputs=[chatbot, txt], postprocess=False,).then(
        bot, chatbot, chatbot
    )

    set_model(chatbot)

if __name__ == "__main__":
    demo.queue()
    demo.queue(concurrency_count=5)
    demo.launch(debug=True, )