File size: 10,597 Bytes
10da927
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9987dc1
10da927
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import os

from langchain import FAISS
from langchain.chains import ConversationalRetrievalChain
from langchain.document_loaders import DirectoryLoader, UnstructuredHTMLLoader, TextLoader, CSVLoader
from langchain.memory import ConversationSummaryBufferMemory
from langchain.prompts import ChatPromptTemplate, HumanMessagePromptTemplate, SystemMessagePromptTemplate
from langchain.text_splitter import RecursiveCharacterTextSplitter, Language

from grader import Grader


def search_index_from_docs(source_chunks, embeddings):
    # print("source chunks: " + str(len(source_chunks)))
    # print("embeddings: " + str(embeddings))
    search_index = FAISS.from_documents(source_chunks, embeddings)
    return search_index


def get_chat_history(inputs) -> str:
    res = []
    for human, ai in inputs:
        res.append(f"Human:{human}\nAI:{ai}")
    return "\n".join(res)


class GraderQA:
    def __init__(self, grader, embeddings):
        self.grader = grader
        self.llm = self.grader.llm
        self.index_file = "vector_stores/canvas-discussions.faiss"
        self.pickle_file = "vector_stores/canvas-discussions.pkl"
        self.rubric_text = grader.rubric_text
        self.search_index = self.get_search_index(embeddings)
        self.chain = self.create_chain(embeddings)
        self.tokens = None
        self.question = None

    def get_search_index(self, embeddings):
        if os.path.isfile(self.pickle_file) and os.path.isfile(self.index_file) and os.path.getsize(
                self.pickle_file) > 0:
            # Load index from pickle file
            search_index = self.load_index(embeddings)
        else:
            search_index = self.create_index(embeddings)
            print("Created index")
        return search_index

    def load_index(self, embeddings):
        # Load index
        db = FAISS.load_local(
            folder_path="vector_stores/",
            index_name="canvas-discussions", embeddings=embeddings,
        )
        print("Loaded index")
        return db

    def create_index(self, embeddings):
        source_chunks = self.create_chunk_documents()
        search_index = search_index_from_docs(source_chunks, embeddings)
        FAISS.save_local(search_index, folder_path="vector_stores/", index_name="canvas-discussions")
        return search_index

    def create_chunk_documents(self):
        sources = self.fetch_data_for_embeddings()

        splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)

        source_chunks = splitter.split_documents(sources)

        print("chunks: " + str(len(source_chunks)))
        print("sources: " + str(len(sources)))

        return source_chunks

    def fetch_data_for_embeddings(self):
        document_list = self.get_csv_files()
        print("document list: " + str(len(document_list)))
        return document_list

    def get_csv_files(self):
        loader = CSVLoader(file_path=self.grader.csv, source_column="student_name")
        document_list = loader.load()
        return document_list

    def create_chain(self, embeddings):
        if not self.search_index:
            self.search_index = self.load_index(embeddings)
        chain = ConversationalRetrievalChain.from_llm(self.llm, self.search_index.as_retriever(search_type='mmr',
                                                                                search_kwargs={'lambda_mult': 1,
                                                                                               'fetch_k': 50,
                                                                                               'k': 30}),
                                                      return_source_documents=True,
                                                      verbose=True,
                                                      memory=ConversationSummaryBufferMemory(memory_key='chat_history',
                                                                                             llm=self.llm,
                                                                                             max_token_limit=40,
                                                                                             return_messages=True,
                                                                                             output_key='answer'),
                                                      get_chat_history=get_chat_history,
                                                      combine_docs_chain_kwargs={"prompt": self.create_prompt()})
        return chain

    def create_prompt(self):
        system_template = f"""You are Canvas Discussions Grading + Feedback QA Bot. Have a conversation with a human, answering the following questions as best you can.
        You are a grading assistant who graded the canvas discussions to create the following grading results and feedback. Use the following pieces of the grading results and feedback to answer the users question.
        Use the following pieces of context to answer the users question. 
        ----------------
        {self.rubric_text}
        ----------------
        {{context}}"""
        messages = [
            SystemMessagePromptTemplate.from_template(system_template),
            HumanMessagePromptTemplate.from_template("{question}"),
        ]
        return ChatPromptTemplate.from_messages(messages)

    def get_tokens(self):
        total_tokens = 0
        for doc in self.docs:
            chat_prompt = self.prompt.format(context=doc, question=self.question)

            num_tokens = self.llm.get_num_tokens(chat_prompt)
            total_tokens += num_tokens

            # summary = self.llm(summary_prompt)

            # print (f"Summary: {summary.strip()}")
            # print ("\n")
        return total_tokens

    def run_qa_chain(self, question):
        self.question = question
        self.get_tokens()
        answer = self.chain(question)
        return answer

# system_template = """You are Canvas Discussions Grading + Feedback QA Bot. Have a conversation with a human, answering the following questions as best you can.
# You are a grading assistant who graded the canvas discussions to create the following grading results and feedback. Use the following pieces of the grading results and feedback to answer the users question.
# Use the following pieces of context to answer the users question.
# ----------------
# {context}"""
#
# messages = [
#     SystemMessagePromptTemplate.from_template(system_template),
#     HumanMessagePromptTemplate.from_template("{question}"),
# ]
# CHAT_PROMPT = ChatPromptTemplate.from_messages(messages)
#
#
# def get_search_index(embeddings):
#     global vectorstore_index
#     if os.path.isfile(pickle_file) and os.path.isfile(index_file) and os.path.getsize(pickle_file) > 0:
#         # Load index from pickle file
#         search_index = load_index(embeddings)
#     else:
#         search_index = create_index(model)
#         print("Created index")
#
#     vectorstore_index = search_index
#     return search_index
#
#
# def create_index(embeddings):
#     source_chunks = create_chunk_documents()
#     search_index = search_index_from_docs(source_chunks, embeddings)
#     # search_index.persist()
#     FAISS.save_local(search_index, folder_path="vector_stores/", index_name="canvas-discussions")
#     # Save index to pickle file
#     # with open(pickle_file, "wb") as f:
#     #     pickle.dump(search_index, f)
#     return search_index
#
#
# def search_index_from_docs(source_chunks, embeddings):
#     # print("source chunks: " + str(len(source_chunks)))
#     # print("embeddings: " + str(embeddings))
#     search_index = FAISS.from_documents(source_chunks, embeddings)
#     return search_index
#
#
# def get_html_files():
#     loader = DirectoryLoader('docs', glob="**/*.html", loader_cls=UnstructuredHTMLLoader, recursive=True)
#     document_list = loader.load()
#     for document in document_list:
#         document.metadata["name"] = document.metadata["source"].split("/")[-1].split(".")[0]
#     return document_list
#
#
# def get_text_files():
#     loader = DirectoryLoader('docs', glob="**/*.txt", loader_cls=TextLoader, recursive=True)
#     document_list = loader.load()
#     return document_list
#
#
# def create_chunk_documents():
#     sources = fetch_data_for_embeddings()
#
#     splitter = RecursiveCharacterTextSplitter.from_language(
#         language=Language.HTML, chunk_size=500, chunk_overlap=0
#     )
#
#     source_chunks = splitter.split_documents(sources)
#
#     print("chunks: " + str(len(source_chunks)))
#     print("sources: " + str(len(sources)))
#
#     return source_chunks
#
#
# def create_chain(question, llm, embeddings):
#     db = load_index(embeddings)
#
#     # Create chain
#     chain = ConversationalRetrievalChain.from_llm(llm, db.as_retriever(search_type='mmr',
#                                                                        search_kwargs={'lambda_mult': 1, 'fetch_k': 50,
#                                                                                       'k': 30}),
#                                                   return_source_documents=True,
#                                                   verbose=True,
#                                                   memory=ConversationSummaryBufferMemory(memory_key='chat_history',
#                                                                                          llm=llm, max_token_limit=40,
#                                                                                          return_messages=True,
#                                                                                          output_key='answer'),
#                                                   get_chat_history=get_chat_history,
#                                                   combine_docs_chain_kwargs={"prompt": CHAT_PROMPT})
#
#     result = chain({"question": question})
#
#     sources = []
#     print(result)
#
#     for document in result['source_documents']:
#         sources.append("\n" + str(document.metadata))
#         print(sources)
#
#     source = ',\n'.join(set(sources))
#     return result['answer'] + '\nSOURCES: ' + source
#
#
# def load_index(embeddings):
#     # Load index
#     db = FAISS.load_local(
#         folder_path="vector_stores/",
#         index_name="canvas-discussions", embeddings=embeddings,
#     )
#     return db
#
#
# def get_chat_history(inputs) -> str:
#     res = []
#     for human, ai in inputs:
#         res.append(f"Human:{human}\nAI:{ai}")
#     return "\n".join(res)