Spaces:
Runtime error
Runtime error
File size: 6,932 Bytes
9bc5acf 10da927 9bc5acf 10da927 9bc5acf 10da927 9bc5acf 10da927 9bc5acf 10da927 2fdfcd4 10da927 2fdfcd4 10da927 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
import json
import os
import re
import shutil
from typing import List
import requests
from bs4 import BeautifulSoup
rubric = None
message = None
rubric_file = 'docs/rubric_data.json'
discussion_entries_file = 'docs/discussion_entries.json'
class DiscussionEntry:
def __init__(self, id: int, parent_id: int, name: str, message: str, replies: List):
self.id = id
self.parent_id = parent_id
self.name = name
self.message = message
self.replies = replies
def to_json(self):
return {
'id': self.id,
'parent_id': self.parent_id,
'name': self.name,
'message': self.message,
'replies': [reply.to_json() for reply in self.replies]
}
def dump_json(self, filename):
with open(filename, 'w') as f:
json.dump(self.to_json(), f)
def extract_entries(entries, participants):
result = []
counter = 0
for entry in entries:
if 'message' in entry and 'deleted' not in entry:
id = entry['id']
parent_id = entry['parent_id']
user_id = entry['user_id']
name = next((f"Student {counter}" for p in participants if p['id'] == user_id), None)
message = entry['message']
replies = []
if 'replies' in entry:
replies = extract_entries(entry['replies'], participants)
result.append(DiscussionEntry(id, parent_id, name, message, replies))
counter += 1
return result
def save_messages(entries, group_id=None):
for entry in entries:
filename = f'docs/{entry.name}.html'
if group_id is not None:
filename = f'docs/group_{group_id}_{entry.name}.html'
with open(filename, 'a+') as f:
if entry.parent_id == None:
f.write(f'<h1><b>Student Post: {entry.name}</b></h1>')
f.write(entry.message)
f.write('<hr>')
else:
f.write(f'<h2><b>Reply to: {entry.parent_id}</b></h2>')
f.write(entry.message)
f.write('<hr>')
save_messages(entry.replies, group_id)
def extract_group_discussions(group_topic_children, headers):
group_entries = []
for group_topic in group_topic_children:
group_id = group_topic['group_id']
topic_id = group_topic['id']
group_discussion_url = f'{base_url}/api/v1/groups/{group_id}/discussion_topics/{topic_id}/view'
group_discussion_response = requests.get(group_discussion_url, headers=headers)
if group_discussion_response.ok:
group_discussion_data = group_discussion_response.json()
entries = extract_entries(group_discussion_data['view'], group_discussion_data['participants'])
# Dump JSON data for group-based discussion
with open(discussion_entries_file, 'w') as f:
json.dump([entry.to_json() for entry in entries], f)
group_entries.append({
'group_id': group_id,
'entries': entries
})
return group_entries
def extract_individual_discussion(discussion_url, headers):
individual_entries = []
discussion_response = requests.get(discussion_url, headers=headers)
if discussion_response.ok:
discussion_data = discussion_response.json()
entries = extract_entries(discussion_data['view'], discussion_data['participants'])
# Dump JSON data for individual discussion
with open(discussion_entries_file, 'w') as f:
json.dump([entry.to_json() for entry in entries], f)
individual_entries.extend(entries)
return individual_entries
def ingest_canvas_discussions(input_url, access_token):
global base_url, rubric, message
match = re.match(r'https://canvas.illinois.edu/courses/(\d+)/discussion_topics/(\d+)', input_url)
if match:
course_id, discussion_topic_id = match.groups()
else:
raise ValueError("Invalid URL")
base_url = 'https://canvas.illinois.edu'
headers = {
'Authorization': f'Bearer {access_token}'
}
discussion_url = f'{base_url}/api/v1/courses/{course_id}/discussion_topics/{discussion_topic_id}/view'
instruction_url = f'{base_url}/api/v1/courses/{course_id}/discussion_topics/{discussion_topic_id}'
instruction_response = requests.get(instruction_url, headers=headers)
if instruction_response.ok:
instruction_data = instruction_response.json()
print(instruction_data)
rubric = []
# Extract title if it exists
if 'title' in instruction_data:
title = instruction_data['title']
rubric = [{'title': title}]
if 'description' in instruction_data['assignment']:
message_html = instruction_data['assignment']['description']
soup = BeautifulSoup(message_html, 'html.parser')
message = soup.get_text()
rubric.append({'instruction': message})
if 'rubric' in instruction_data['assignment'] and 'description' in instruction_data['assignment']:
rubric.extend(instruction_data['assignment']['rubric'])
if 'points_possible' in instruction_data['assignment']:
points_possible = instruction_data['assignment']['points_possible']
rubric.append({'points_possible': points_possible})
# Check if the docs folder exists
if os.path.exists('docs'):
#delete the folder
shutil.rmtree('docs')
# Create the docs folder
os.makedirs('docs')
with open(rubric_file, 'w') as f:
json.dump(rubric, f)
print("Extracted instructions and rubric")
else:
print(f'Error: {instruction_response.text}')
# Check if the discussion is an individual discussion with associated group-based discussions
if 'group_topic_children' in instruction_data and len(instruction_data['group_topic_children']) > 0:
# Extract and save group-based discussions
group_entries = extract_group_discussions(instruction_data['group_topic_children'], headers)
os.makedirs('docs', exist_ok=True)
print("Extracted group discussion entries: {}", str(len(group_entries)))
for group_entry in group_entries:
save_messages(group_entry['entries'], group_entry['group_id'])
else:
# Extract and save standalone individual or group-based discussion
individual_entries = extract_individual_discussion(discussion_url, headers)
print("Extracted individual discussion entries")
os.makedirs('docs', exist_ok=True)
save_messages(individual_entries)
else:
print(f'Error: {instruction_response.text}')
def create_vector_store():
return None |