rohan13's picture
map reduce to answer summary based questions
c1fe6fb
raw
history blame
11.7 kB
import asyncio
import csv
import glob
import json
import os
import shutil
from datetime import datetime
from typing import Optional
from langchain import PromptTemplate
from langchain.chains import LLMChain
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import DirectoryLoader, UnstructuredHTMLLoader
from langchain.output_parsers import PydanticOutputParser
from pathvalidate import sanitize_filename
from pydantic import BaseModel, Field
from tqdm import tqdm
class Grader:
def __init__(self, model):
print("Setting up environment for grading")
os.environ["LANGCHAIN_TRACING"] = "true"
self.title = None
self.model = model
self.rubric_file = 'docs/rubric_data.json'
self.discussions_file_path = "docs/discussion_entries.json"
self.fieldnames = ['student_name', 'total_score', 'student_feedback', 'grader_comments', 'summary']
self.docs = self.get_html_files()
self.llm = ChatOpenAI(temperature=0, model_name=model)
self.parser: PydanticOutputParser = self.create_parser()
self.rubric_text = self.create_rubric_text()
self.prompt = self.create_prompt()
self.splitter = None
self.tokens = self.get_num_tokens()
self.llm_chain = self.create_llm_chain(model)
self.csv = self.get_csv_file_name()
self.outputs = []
self.completed = 0
self.lock = asyncio.Lock()
class ToolArgsSchema(BaseModel):
student_name: Optional[str] = Field(description="The name of the student")
total_score: int = Field(description="The grade of the student's answer")
student_feedback: Optional[str] = Field(
description="The developmental feedback from Grader's point of view to the student, some examples are: 'Great work, ...', 'Although, your submission is relevant to the question, it doesn't answer the question entirely...'. Give customized feedback based on student's answer")
grader_comments: Optional[str] = Field(
description="The grade split breakup based on rubric added as grader's one liner customized comments to explain how the grade was calculated for that particular student's answer")
summary: Optional[str] = Field(
description="The overall summary of the student's answer outlining key points from the student's answer based on the rubric which can be used as a portion of a vectorstore, used to answer summary based questions about all the discussions")
class Config:
schema_extra = {
"required": ["student_name", "total_score", "student_feedback", "grader_comments", "summary"]
}
def create_parser(self):
# print("in parser")
return PydanticOutputParser(pydantic_object=self.ToolArgsSchema)
def create_rubric_text(self):
with open(self.rubric_file, 'r') as file:
rubric = json.load(file)
rubric_text = []
self.title = None # Initialize title
for r in rubric:
if 'description' in r and 'ratings' in r:
rubric_text.append(f"RUBRIC CATEGORY: {r['description']}\n" + "\n".join(
[f"POINTS: {rating['points']} CRITERIA: {rating['description']}" for rating in r['ratings']]))
elif 'points_possible' in r:
rubric_text.append(f"MAX POINTS POSSIBLE: {r['points_possible']}")
print("added points_possible")
elif 'title' in r: # Check if title exists in rubric
self.title = r['title'] # Save title for later use
rubric_text.append(f"TITLE: {self.title}")
elif 'instruction' in r:
rubric_text.append(f"DISCUSSION INSTRUCTIONS: {r['instruction']}")
rubric_text = "\n".join(rubric_text)
# print(rubric_text) Add this to log when moving to application
return rubric_text
def create_map_prompt(self):
map_template_string = f"""I am an expert concise Canvas Discussion Summarizer! I am here to concisely summarize the following sections of a long canvas discussion responses of this student on the basis of instructions and rubric provided.
The aim is to capture the important and key points on the basis of instructions and rubric provided and create a short summary, so that grading can be done on all the summarized sections of canvas discussion of a student's response.
--------------------
Following is the canvas instruction and rubric:
{self.rubric_text}
--------------------
I will summarize this extracted part of a long canvas discussion:
{{input_documents}}
"""
return PromptTemplate(template=map_template_string, input_variables=["input_documents"])
def create_reduce_prompt(self):
reduce_template_string = f"""I am a Canvas Discussion Grader! I am here to grade the following summarized sections of canvas discussion responses of the student on the basis of instructions and rubric provided.
--------------------
To grade student discussion, I will use the discussion instructions and rubric below. I will not deviate from the grading scheme.
{self.rubric_text}
--------------------
I will be able to identify each student by name, their key interests, key features pertinent to the discussion intruction and rubric.
I will be able to summarize the entire discussion in concise manner including key points from each student's answer.
--------------------
I will grade the following summarized canvas discussion: {{input_documents}}
--------------------
My grading results will ALWAYS be in following format:
Format instructions: {{format_instructions}}
"""
return PromptTemplate(
template=reduce_template_string,
input_variables=["input_documents"],
output_parser=self.parser,
partial_variables={"format_instructions": self.parser.get_format_instructions()}
)
def create_map_llm_chain(self):
print("Ready to grade!")
map_llm_chain = LLMChain(
llm=self.llm,
prompt=self.map_prompt,
verbose=True,
)
return map_llm_chain
def create_reduce_llm_chain(self):
reduce_llm_chain = LLMChain(
llm=self.llm,
prompt=self.reduce_prompt,
verbose=True,
)
return reduce_llm_chain
async def process_file(self, file, pbar):
if self.model == 'gpt-4':
await asyncio.sleep(10) # Add a 3-second delay before each request
result = await self.llm_chain.arun(file)
output: self.ToolArgsSchema = self.parser.parse(result)
async with self.lock:
self.completed += 1
pbar.update(1)
return result
async def run_chain(self):
print("Grading Started! Now sit back and get a coffee \u2615")
total = len(self.docs)
pbar = tqdm(total=total)
# if model is gpt-4, batch size is 2, else batch size is 5
batch_size = 2 if self.model == 'gpt-4' else 5
batches = [self.docs[i:i + batch_size] for i in range(0, len(self.docs), batch_size)]
for batch in batches:
tasks = [self.process_file(file, pbar) for file in batch]
results = await asyncio.gather(*tasks)
for result in results:
output: self.ToolArgsSchema = self.parser.parse(result)
self.outputs.append(output)
if self.model == 'gpt-4':
await asyncio.sleep(3) # Add a delay between each batch
pbar.close()
self.save_csv()
return True
def create_csv(self):
# remove existing csvs in output folder
if os.path.exists('output'):
shutil.rmtree('output')
os.mkdir('output')
now = datetime.now() # current date and time
date_time = now.strftime("%m-%d-%Y_%H-%M-%S")
if self.title: # If title exists, use it in the filename
file_name = f"{self.title}-{self.llm.model_name}-{date_time}.csv"
else: # If title doesn't exist, use 'output' in the filename
file_name = f"output-{self.llm.model_name}-{date_time}.csv"
# Sanitize the entire filename
sanitized_file_name = sanitize_filename(file_name)
sanitized_file_name = os.path.join('output', sanitized_file_name)
with open(sanitized_file_name, 'w', newline='') as csvfile:
writer = csv.DictWriter(csvfile, fieldnames=self.fieldnames)
writer.writeheader()
return sanitized_file_name
def save_csv(self):
# Use the filename created in create_csv method
self.csv = self.create_csv()
with open(self.csv, 'a', newline='') as csvfile:
writer = csv.DictWriter(csvfile, fieldnames=self.fieldnames)
rows = [output.dict() for output in self.outputs] # Convert each output to a dictionary
writer.writerows(rows) # Write all rows to the CSV
print(f"Saved grades for {len(self.outputs)} students in {self.csv}")
return True
return False
def get_html_files(self):
loader = DirectoryLoader('docs', glob="**/*.html", loader_cls=UnstructuredHTMLLoader, recursive=True)
document_list = loader.load()
for document in document_list:
document.metadata["name"] = document.metadata["source"].split("/")[-1].split(".")[0]
break
return document_list
def create_prompt(self):
# print("in prompt")
prompt_template = f"""I am a Canvas Discussion Grader! I am here to grade the following canvas discussion on the basis of instructions and rubric provided.
To grade student discussion, I will follow the rubric below. I will not deviate from the grading scheme.
{self.rubric_text}
I will be able to identify each student by name, identify their key interests, key features of the responses pertinent to the discussion intruction and rubric.
I will be able to summarize the entire discussion in concise manner including key points from each student's answer.
I will grade the following canvas discussion: {{input_documents}}
My grading results will ALWAYS be in following format:
Format instructions: {{format_instructions}}
"""
return PromptTemplate(template=prompt_template, input_variables=["input_documents"], output_parser=self.parser,
partial_variables={"format_instructions": self.parser.get_format_instructions()})
def create_llm_chain(self, model):
print("Ready to grade!")
return LLMChain(
llm=self.llm,
prompt=self.prompt,
)
def get_num_tokens(self):
total_tokens = 0
for doc in self.docs:
summary_prompt = self.prompt.format(input_documents=doc)
num_tokens = self.llm.get_num_tokens(summary_prompt)
total_tokens += num_tokens
# summary = self.llm(summary_prompt)
# print (f"Summary: {summary.strip()}")
# print ("\n")
return total_tokens
def get_csv_file_name(self):
output_dir = 'output'
if os.path.exists(output_dir):
csv_files = glob.glob(os.path.join(output_dir, '*.csv'))
if csv_files:
return csv_files[0] # return the first csv file found
return None
def run(model):
grader = Grader(model)
asyncio.run(grader.run_chain())
print("Grading successful")