rohan13's picture
map reduce to answer summary based questions
c1fe6fb
raw
history blame
13.5 kB
import os
from langchain import FAISS
from langchain.chains import ConversationalRetrievalChain
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import CSVLoader
from langchain.memory import ConversationBufferMemory
from langchain.prompts import ChatPromptTemplate, HumanMessagePromptTemplate, SystemMessagePromptTemplate
from langchain.text_splitter import RecursiveCharacterTextSplitter
def search_index_from_docs(source_chunks, embeddings):
# print("source chunks: " + str(len(source_chunks)))
# print("embeddings: " + str(embeddings))
search_index = FAISS.from_documents(source_chunks, embeddings)
return search_index
def get_chat_history(inputs) -> str:
res = []
for human, ai in inputs:
res.append(f"Human:{human}\nAI:{ai}")
return "\n".join(res)
class GraderQA:
def __init__(self, grader, embeddings):
self.grader = grader
self.llm = self.grader.llm
self.index_file = "vector_stores/canvas-discussions.faiss"
self.pickle_file = "vector_stores/canvas-discussions.pkl"
self.rubric_text = grader.rubric_text
self.search_index = self.get_search_index(embeddings)
self.chain = self.create_chain(embeddings)
self.tokens = None
self.question = None
def get_search_index(self, embeddings):
if os.path.isfile(self.pickle_file) and os.path.isfile(self.index_file) and os.path.getsize(
self.pickle_file) > 0:
# Load index from pickle file
search_index = self.load_index(embeddings)
else:
search_index = self.create_index(embeddings)
print("Created index")
return search_index
def load_index(self, embeddings):
# Load index
db = FAISS.load_local(
folder_path="vector_stores/",
index_name="canvas-discussions", embeddings=embeddings,
)
print("Loaded index")
return db
def create_index(self, embeddings):
source_chunks = self.create_chunk_documents()
search_index = search_index_from_docs(source_chunks, embeddings)
FAISS.save_local(search_index, folder_path="vector_stores/", index_name="canvas-discussions")
return search_index
def create_chunk_documents(self):
sources = self.fetch_data_for_embeddings()
splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)
source_chunks = splitter.split_documents(sources)
print("chunks: " + str(len(source_chunks)))
print("sources: " + str(len(sources)))
return source_chunks
def fetch_data_for_embeddings(self):
document_list = self.get_csv_files()
print("document list: " + str(len(document_list)))
return document_list
def get_csv_files(self):
loader = CSVLoader(file_path=self.grader.csv, source_column="student_name")
document_list = loader.load()
return document_list
def create_chain(self, embeddings):
if not self.search_index:
self.search_index = self.load_index(embeddings)
question_prompt, combine_prompt = self.create_map_reduce_prompt()
chain = ConversationalRetrievalChain.from_llm(llm=self.llm, chain_type='map_reduce',
retriever=self.search_index.as_retriever(search_type='mmr',
search_kwargs={
'lambda_mult': 1,
'fetch_k': 50,
'k': 30}),
return_source_documents=True,
verbose=True,
memory=ConversationBufferMemory(memory_key='chat_history',
return_messages=True,
output_key='answer'),
condense_question_llm=ChatOpenAI(temperature=0,
model='gpt-3.5-turbo'),
combine_docs_chain_kwargs={"question_prompt": question_prompt,
"combine_prompt": combine_prompt})
return chain
def create_map_reduce_prompt(self):
system_template = f"""Use the following portion of a long grading results document to answer the question BUT ONLY FOR THE STUDENT MENTIONED. Use the following examples to take guidance on how to answer the question.
Examples:
Question: How many students participated in the discussion?
Answer: This student participated in the discussion./This student did not participate in the discussion.
Question: What was the average score for the discussion?
Answer: This student received a score of 10/10 for the discussion.
Question: How many students received a full score?/How many students did not receive a full score?
Answer: This student received a full score./This student did not receive a full score.
Question: How many students lost marks in X category of the rubric?
Answer: This student lost marks in X category of the rubric./This student did not lose marks in X category of the rubric.
______________________
Grading Result For:
{{context}}
______________________
Following are the instructions and rubric of the discussion post for reference, used to grade the discussion.
----------------
Instructions and Rubric:
{self.rubric_text}
"""
messages = [
SystemMessagePromptTemplate.from_template(system_template),
HumanMessagePromptTemplate.from_template("{question}"),
]
CHAT_QUESTION_PROMPT = ChatPromptTemplate.from_messages(messages)
system_template = """You are Canvas Discussions Grading + Feedback QA Bot. Have a conversation with a human, answering the questions about the grading results, feedback, answers as accurately as possible.
Use the following answers for each student to answer the users question as accurately as possible.
You are an expert at basic calculations and answering questions on grading results and can answer the following questions with ease.
If you don't know the answer, just say that you don't know. Don't try to make up an answer.
______________________
{summaries}"""
messages = [
SystemMessagePromptTemplate.from_template(system_template),
HumanMessagePromptTemplate.from_template("{question}"),
]
CHAT_COMBINE_PROMPT = ChatPromptTemplate.from_messages(messages)
return CHAT_QUESTION_PROMPT, CHAT_COMBINE_PROMPT
def create_prompt(self):
system_template = f"""You are Canvas Discussions Grading + Feedback QA Bot. Have a conversation with a human, answering the questions about the grading results, feedback, answers as accurately as possible.
You are a grading assistant who graded the canvas discussions to create the following grading results and feedback.
Use the following instruction, rubric of the discussion which were used to grade the discussions and refine the answer if needed.
----------------
{self.rubric_text}
----------------
Use the following pieces of the grading results, score, feedback and summary of student responses to answer the users question as accurately as possible.
{{context}}"""
messages = [
SystemMessagePromptTemplate.from_template(system_template),
HumanMessagePromptTemplate.from_template("{question}"),
]
return ChatPromptTemplate.from_messages(messages)
def get_tokens(self):
total_tokens = 0
for doc in self.docs:
chat_prompt = self.prompt.format(context=doc, question=self.question)
num_tokens = self.llm.get_num_tokens(chat_prompt)
total_tokens += num_tokens
# summary = self.llm(summary_prompt)
# print (f"Summary: {summary.strip()}")
# print ("\n")
return total_tokens
def run_qa_chain(self, question):
self.question = question
self.get_tokens()
answer = self.chain(question)
return answer
# system_template = """You are Canvas Discussions Grading + Feedback QA Bot. Have a conversation with a human, answering the following questions as best you can.
# You are a grading assistant who graded the canvas discussions to create the following grading results and feedback. Use the following pieces of the grading results and feedback to answer the users question.
# Use the following pieces of context to answer the users question.
# ----------------
# {context}"""
#
# messages = [
# SystemMessagePromptTemplate.from_template(system_template),
# HumanMessagePromptTemplate.from_template("{question}"),
# ]
# CHAT_PROMPT = ChatPromptTemplate.from_messages(messages)
#
#
# def get_search_index(embeddings):
# global vectorstore_index
# if os.path.isfile(pickle_file) and os.path.isfile(index_file) and os.path.getsize(pickle_file) > 0:
# # Load index from pickle file
# search_index = load_index(embeddings)
# else:
# search_index = create_index(model)
# print("Created index")
#
# vectorstore_index = search_index
# return search_index
#
#
# def create_index(embeddings):
# source_chunks = create_chunk_documents()
# search_index = search_index_from_docs(source_chunks, embeddings)
# # search_index.persist()
# FAISS.save_local(search_index, folder_path="vector_stores/", index_name="canvas-discussions")
# # Save index to pickle file
# # with open(pickle_file, "wb") as f:
# # pickle.dump(search_index, f)
# return search_index
#
#
# def search_index_from_docs(source_chunks, embeddings):
# # print("source chunks: " + str(len(source_chunks)))
# # print("embeddings: " + str(embeddings))
# search_index = FAISS.from_documents(source_chunks, embeddings)
# return search_index
#
#
# def get_html_files():
# loader = DirectoryLoader('docs', glob="**/*.html", loader_cls=UnstructuredHTMLLoader, recursive=True)
# document_list = loader.load()
# for document in document_list:
# document.metadata["name"] = document.metadata["source"].split("/")[-1].split(".")[0]
# return document_list
#
#
# def get_text_files():
# loader = DirectoryLoader('docs', glob="**/*.txt", loader_cls=TextLoader, recursive=True)
# document_list = loader.load()
# return document_list
#
#
# def create_chunk_documents():
# sources = fetch_data_for_embeddings()
#
# splitter = RecursiveCharacterTextSplitter.from_language(
# language=Language.HTML, chunk_size=500, chunk_overlap=0
# )
#
# source_chunks = splitter.split_documents(sources)
#
# print("chunks: " + str(len(source_chunks)))
# print("sources: " + str(len(sources)))
#
# return source_chunks
#
#
# def create_chain(question, llm, embeddings):
# db = load_index(embeddings)
#
# # Create chain
# chain = ConversationalRetrievalChain.from_llm(llm, db.as_retriever(search_type='mmr',
# search_kwargs={'lambda_mult': 1, 'fetch_k': 50,
# 'k': 30}),
# return_source_documents=True,
# verbose=True,
# memory=ConversationSummaryBufferMemory(memory_key='chat_history',
# llm=llm, max_token_limit=40,
# return_messages=True,
# output_key='answer'),
# get_chat_history=get_chat_history,
# combine_docs_chain_kwargs={"prompt": CHAT_PROMPT})
#
# result = chain({"question": question})
#
# sources = []
# print(result)
#
# for document in result['source_documents']:
# sources.append("\n" + str(document.metadata))
# print(sources)
#
# source = ',\n'.join(set(sources))
# return result['answer'] + '\nSOURCES: ' + source
#
#
# def load_index(embeddings):
# # Load index
# db = FAISS.load_local(
# folder_path="vector_stores/",
# index_name="canvas-discussions", embeddings=embeddings,
# )
# return db
#
#
# def get_chat_history(inputs) -> str:
# res = []
# for human, ai in inputs:
# res.append(f"Human:{human}\nAI:{ai}")
# return "\n".join(res)