rohan13 commited on
Commit
d1438df
2 Parent(s): 2fdfcd4 1b6dc66

Merge remote-tracking branch 'origin/main'

Browse files
Files changed (1) hide show
  1. app.py +51 -35
app.py CHANGED
@@ -4,14 +4,15 @@ import os
4
  import shutil
5
  import time
6
  import traceback
 
 
7
 
 
8
  import gradio as gr
9
- import pandas as pd
10
  from dotenv import load_dotenv
11
  from langchain.chat_models import ChatOpenAI
12
  from langchain.embeddings import OpenAIEmbeddings
13
 
14
- import utils
15
  from csv_agent import CSVAgent
16
  from grader import Grader
17
  from grader_qa import GraderQA
@@ -107,13 +108,21 @@ def start_grading(history):
107
  return history, disabled, enabled, enabled, enabled
108
 
109
 
 
 
 
 
 
 
 
 
 
 
110
  def start_downloading():
111
- # files = glob.glob("output/*.csv")
112
- # if files:
113
- # file = files[0]
114
- # return gr.outputs.File(file)
115
- # else:
116
- # return "File not found"
117
  print(grader.csv)
118
  return grader.csv, gr.update(visible=True), gr.update(value=process_csv_text(), visible=True)
119
 
@@ -122,6 +131,8 @@ def get_headers():
122
  return list(df.columns)
123
 
124
 
 
 
125
  def get_first_message(history):
126
  global grader_qa
127
  history = [(None,
@@ -179,27 +190,27 @@ def enable_fields(url_status, canvas_api_key_status, submit_status, grade_status
179
  def reset_data():
180
  # Use shutil.rmtree() to delete output, docs, and vector_stores folders, reset grader and grader_qa, and get_grading_status, reset and return history
181
  global grader, grader_qa
 
 
 
 
 
 
 
 
182
  #If there's data in docs/output folder during grading [During Grading]
183
- if os.path.isdir('output') and len(glob.glob("output/*.csv")) > 0 and len(glob.glob("docs/*.json")) > 0 and len(
184
- glob.glob("docs/*.html")) > 0:
185
  reset_folder('output')
186
  reset_folder('docs')
 
187
  grader = None
188
  grader_qa = None
189
  history = [(None, 'Data reset successfully')]
190
- return history, enabled, enabled, enabled, disabled, disabled, disabled
191
- # If there's data in docs folder [During Ingestion]
192
- elif len(glob.glob("docs/*.json")) > 0 and len(glob.glob("docs/*.html")):
193
- reset_folder('docs')
194
- history = [(None, 'Data reset successfully')]
195
- return history, enabled, enabled, enabled, disabled, disabled, disabled
196
- #If there's data in vector_stores folder
197
- elif len(glob.glob("vector_stores/*.faiss")) > 0 or len(glob.glob("vector_stores/*.pkl")) > 0:
198
- reset_folder('vector_stores')
199
- history = [(None, 'Data reset successfully')]
200
- return history, enabled, enabled, enabled, disabled, disabled, disabled
201
-
202
-
203
  def get_output_dir(orig_name):
204
  script_dir = os.path.dirname(os.path.abspath(__file__))
205
  output_dir = os.path.join(script_dir, 'output', orig_name)
@@ -227,13 +238,16 @@ def upload_grading_results(file, history):
227
  def bot(history):
228
  return history
229
 
 
230
  def process_csv_text():
231
  file_path = utils.get_csv_file_name()
232
  df = pd.read_csv(file_path)
233
  return df
234
 
 
235
  with gr.Blocks() as demo:
236
  gr.Markdown(f"<h2><center>{'Canvas Discussion Grading With Feedback'}</center></h2>")
 
237
 
238
  with gr.Row():
239
  url = gr.Textbox(
@@ -245,33 +259,34 @@ with gr.Blocks() as demo:
245
  label="Canvas API Key",
246
  placeholder="Enter your Canvas API Key", type="password"
247
  )
248
-
249
- submit = gr.Button(value="Step 1: Submit", variant="secondary", )
250
  with gr.Row():
251
  table = gr.Dataframe(label ='Canvas CSV Output', type="pandas", overflow_row_behaviour="paginate", visible = False, wrap=True)
252
 
253
- with gr.Row():
254
- grade = gr.Button(value="Step 2: Grade", variant="secondary")
255
- download = gr.Button(value="Step 3: View Grading Output", variant="secondary")
 
256
  file = gr.components.File(label="CSV Output", container=False, visible=False).style(height=100)
 
257
  reset = gr.ClearButton(value="Reset")
258
 
259
  chatbot = gr.Chatbot([], label="Chat with grading results", elem_id="chatbot", height=400)
260
-
261
  with gr.Row():
262
  with gr.Column(scale=3):
263
  txt = gr.Textbox(
264
  label="Ask questions about how students did on the discussion",
265
  placeholder="Enter text and press enter, or upload an image", lines=1
266
  )
267
- ask = gr.Button(value="Step 4: Chat", variant="secondary", scale=1)
268
- upload = gr.UploadButton(label="Upload grading results", type="file", file_types=["csv"], scale=0.5)
269
-
270
  chatbot.value = get_first_message([])
271
 
272
  with gr.Row():
273
  table = gr.Dataframe(label ='Canvas CSV Output', type="pandas", overflow_row_behaviour="paginate", visible = False, wrap=True)
274
-
275
  submit.click(ingest, inputs=[url, canvas_api_key, chatbot], outputs=[chatbot, url, canvas_api_key, submit, grade],
276
  postprocess=False).then(
277
  bot, chatbot, chatbot
@@ -285,7 +300,8 @@ with gr.Blocks() as demo:
285
  download.click(start_downloading, inputs=[], outputs=[file, file, table]).then(
286
  bot, chatbot, chatbot
287
  )
288
-
 
289
  txt.submit(add_text, [chatbot, txt], [chatbot, txt], postprocess=False).then(
290
  bot, chatbot, chatbot
291
  )
@@ -294,7 +310,7 @@ with gr.Blocks() as demo:
294
  bot, chatbot, chatbot
295
  )
296
 
297
- reset.click(reset_data, inputs=[], outputs=[chatbot, url, canvas_api_key, submit, table, grade, download]).success(
298
  bot, chatbot, chatbot)
299
 
300
  upload.upload(upload_grading_results, inputs=[upload, chatbot], outputs=[chatbot], postprocess=False, ).then(
 
4
  import shutil
5
  import time
6
  import traceback
7
+ import pandas as pd
8
+ import utils
9
 
10
+ from zipfile import ZipFile
11
  import gradio as gr
 
12
  from dotenv import load_dotenv
13
  from langchain.chat_models import ChatOpenAI
14
  from langchain.embeddings import OpenAIEmbeddings
15
 
 
16
  from csv_agent import CSVAgent
17
  from grader import Grader
18
  from grader_qa import GraderQA
 
108
  return history, disabled, enabled, enabled, enabled
109
 
110
 
111
+ # def start_downloading(history):
112
+ # files = glob.glob("output/*.csv")
113
+ # if files:
114
+ # file = files[0]
115
+ # download.interactive = True
116
+ # return gr.components.File(file)
117
+ # else:
118
+ # return " No file found"
119
+
120
+
121
  def start_downloading():
122
+ # with ZipFile("output/*.csv", "w") as zipObj:
123
+ # for idx, file in enumerate(files):
124
+ # zipObj.write(file.name, file.name.split("/")[-1])
125
+ # return "outputfiles.zip"
 
 
126
  print(grader.csv)
127
  return grader.csv, gr.update(visible=True), gr.update(value=process_csv_text(), visible=True)
128
 
 
131
  return list(df.columns)
132
 
133
 
134
+ #file_input = glob.glob("output/*.csv") #[gr.File(file_count="multiple", file_types=["text", ".json", ".csv"])]
135
+
136
  def get_first_message(history):
137
  global grader_qa
138
  history = [(None,
 
190
  def reset_data():
191
  # Use shutil.rmtree() to delete output, docs, and vector_stores folders, reset grader and grader_qa, and get_grading_status, reset and return history
192
  global grader, grader_qa
193
+ # reset_folder('output')
194
+ # reset_folder('docs')
195
+ # reset_folder('vector_stores')
196
+ # grader = None
197
+ # grader_qa = None
198
+ # history = [(None, 'Data reset successfully')]
199
+ # return history
200
+ #disha
201
  #If there's data in docs/output folder during grading [During Grading]
202
+ if os.path.isdir('output') and len(glob.glob("output/*.csv")) > 0 or len(glob.glob("docs/*.json")) > 0 or len(
203
+ glob.glob("docs/*.html")) > 0 or len(glob.glob("vector_stores/*.faiss")) > 0 or len(glob.glob("vector_stores/*.pkl")) > 0:
204
  reset_folder('output')
205
  reset_folder('docs')
206
+ reset_folder('vector_stores')
207
  grader = None
208
  grader_qa = None
209
  history = [(None, 'Data reset successfully')]
210
+ url.placeholder = [(None, 'Enter your Canvas Discussion URL')]
211
+ canvas_api_key.placeholder = [(None, 'Enter your Canvas API Key')]
212
+ return history, enabled, enabled, enabled, disabled, disabled, disabled, disabled, disabled, disabled, disabled, disabled
213
+
 
 
 
 
 
 
 
 
 
214
  def get_output_dir(orig_name):
215
  script_dir = os.path.dirname(os.path.abspath(__file__))
216
  output_dir = os.path.join(script_dir, 'output', orig_name)
 
238
  def bot(history):
239
  return history
240
 
241
+
242
  def process_csv_text():
243
  file_path = utils.get_csv_file_name()
244
  df = pd.read_csv(file_path)
245
  return df
246
 
247
+
248
  with gr.Blocks() as demo:
249
  gr.Markdown(f"<h2><center>{'Canvas Discussion Grading With Feedback'}</center></h2>")
250
+
251
 
252
  with gr.Row():
253
  url = gr.Textbox(
 
259
  label="Canvas API Key",
260
  placeholder="Enter your Canvas API Key", type="password"
261
  )
262
+ submit = gr.Button(value="Submit", variant="secondary", )
 
263
  with gr.Row():
264
  table = gr.Dataframe(label ='Canvas CSV Output', type="pandas", overflow_row_behaviour="paginate", visible = False, wrap=True)
265
 
266
+ with gr.Row(equal_height=True):
267
+
268
+ grade = gr.Button(value="Grade", variant="secondary")
269
+ download = gr.Button(value="Generate Output", variant="secondary")
270
  file = gr.components.File(label="CSV Output", container=False, visible=False).style(height=100)
271
+ #reset = gr.ClearButton(value="Reset", components=[url, canvas_api_key, submit, table, grade, download])
272
  reset = gr.ClearButton(value="Reset")
273
 
274
  chatbot = gr.Chatbot([], label="Chat with grading results", elem_id="chatbot", height=400)
275
+
276
  with gr.Row():
277
  with gr.Column(scale=3):
278
  txt = gr.Textbox(
279
  label="Ask questions about how students did on the discussion",
280
  placeholder="Enter text and press enter, or upload an image", lines=1
281
  )
282
+
283
+ upload = gr.UploadButton(label="Upload grading results", type="file", file_types=["csv"], scale=1)
284
+ ask = gr.Button(value="Ask", variant="secondary", scale=1)
285
  chatbot.value = get_first_message([])
286
 
287
  with gr.Row():
288
  table = gr.Dataframe(label ='Canvas CSV Output', type="pandas", overflow_row_behaviour="paginate", visible = False, wrap=True)
289
+
290
  submit.click(ingest, inputs=[url, canvas_api_key, chatbot], outputs=[chatbot, url, canvas_api_key, submit, grade],
291
  postprocess=False).then(
292
  bot, chatbot, chatbot
 
300
  download.click(start_downloading, inputs=[], outputs=[file, file, table]).then(
301
  bot, chatbot, chatbot
302
  )
303
+
304
+
305
  txt.submit(add_text, [chatbot, txt], [chatbot, txt], postprocess=False).then(
306
  bot, chatbot, chatbot
307
  )
 
310
  bot, chatbot, chatbot
311
  )
312
 
313
+ reset.click(reset_data, inputs=[], outputs=[chatbot, url, canvas_api_key, submit, table, grade, download, txt, file, upload, ask]).success(
314
  bot, chatbot, chatbot)
315
 
316
  upload.upload(upload_grading_results, inputs=[upload, chatbot], outputs=[chatbot], postprocess=False, ).then(