import gradio as gr from main import index, run from gtts import gTTS import os, time from transformers import pipeline p = pipeline("automatic-speech-recognition") """Use text to call chat method from main.py""" def add_text(history, text): print("Question asked: " + text) response = run_model(text) history = history + [(text, response)] print(history) return history, "" def run_model(text): start_time = time.time() print("start time:" + str(start_time)) response = run(text) end_time = time.time() # If response contains string `SOURCES:`, then add a \n before `SOURCES` if "SOURCES:" in response: response = response.replace("SOURCES:", "\nSOURCES:") # response = response + "\n\n" + "Time taken: " + str(end_time - start_time) print(response) print("Time taken: " + str(end_time - start_time)) return response def get_output(history, audio): txt = p(audio)["text"] # history.append(( (audio, ) , txt)) audio_path = 'response.wav' response = run_model(txt) # Remove all text from SOURCES: to the end of the string trimmed_response = response.split("SOURCES:")[0] myobj = gTTS(text=trimmed_response, lang='en', slow=False) myobj.save(audio_path) # split audio by / and keep the last element # audio = audio.split("/")[-1] # audio = audio + ".wav" history.append(( (audio, ) , (audio_path, ))) print(history) return history def set_model(history): history = get_first_message(history) index() return history def get_first_message(history): history = [(None, 'Get your canvas disucssion graded. Add your discussion url and get your discussions graded in instantly.')] return history def bot(history): return history with gr.Blocks() as demo: chatbot = gr.Chatbot(get_first_message([]), elem_id="chatbot").style(height=600) with gr.Row(): with gr.Column(scale=0.75): txt = gr.Textbox( label="8 Nous Grading Bot", placeholder="Enter text and press enter, or upload an image", lines=1 ).style(container=False) with gr.Column(scale=0.25): audio = gr.Audio(source="microphone", type="filepath").style(container=False) txt.submit(add_text, [chatbot, txt], [chatbot, txt], postprocess=False).then( bot, chatbot, chatbot ) audio.change(fn=get_output, inputs=[chatbot, audio], outputs=[chatbot]).then( bot, chatbot, chatbot ) audio.change(lambda:None, None, audio) set_model(chatbot) if __name__ == "__main__": demo.queue() demo.queue(concurrency_count=5) demo.launch(debug=True)