Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- app.py +61 -0
- requirements.txt +4 -0
- saved_model.h5 +3 -0
app.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
import tensorflow as tf
|
4 |
+
from tensorflow.keras.preprocessing import image
|
5 |
+
from PIL import Image
|
6 |
+
|
7 |
+
# ------------------------------
|
8 |
+
# Load the trained model
|
9 |
+
# ------------------------------
|
10 |
+
@st.cache_resource()
|
11 |
+
def load_model():
|
12 |
+
return tf.keras.models.load_model("model.h5")
|
13 |
+
|
14 |
+
model = load_model()
|
15 |
+
|
16 |
+
# Class labels from your notebook
|
17 |
+
CLASS_LABELS = ["Glioma", "Meningioma", "No Tumor", "Pituitary Tumor"]
|
18 |
+
|
19 |
+
# ------------------------------
|
20 |
+
# Image Preprocessing
|
21 |
+
# ------------------------------
|
22 |
+
def preprocess_image(img):
|
23 |
+
"""Preprocess the image to match the model's input requirements."""
|
24 |
+
img = img.resize((224, 224)) # Resize to model input size
|
25 |
+
img = img.convert("RGB") # Ensure RGB mode
|
26 |
+
img_array = np.array(img) / 255.0 # Normalize pixel values
|
27 |
+
img_array = np.expand_dims(img_array, axis=0) # Add batch dimension
|
28 |
+
return img_array
|
29 |
+
|
30 |
+
# ------------------------------
|
31 |
+
# Streamlit UI
|
32 |
+
# ------------------------------
|
33 |
+
st.title("🧠 Brain Tumor Detection with Deep Learning")
|
34 |
+
st.write("Upload an MRI scan (JPG, PNG) to check for a brain tumor.")
|
35 |
+
|
36 |
+
uploaded_file = st.file_uploader("Choose an MRI scan...", type=["jpg", "png", "jpeg"])
|
37 |
+
|
38 |
+
if uploaded_file is not None:
|
39 |
+
# Display the uploaded image
|
40 |
+
image = Image.open(uploaded_file)
|
41 |
+
st.image(image, caption="Uploaded MRI Scan", use_column_width=True)
|
42 |
+
|
43 |
+
# Preprocess the image
|
44 |
+
img_array = preprocess_image(image)
|
45 |
+
|
46 |
+
# Make prediction
|
47 |
+
prediction = model.predict(img_array)
|
48 |
+
predicted_class = np.argmax(prediction, axis=1)[0]
|
49 |
+
confidence = np.max(prediction)
|
50 |
+
|
51 |
+
# Display result
|
52 |
+
st.subheader("🩺 Prediction Results")
|
53 |
+
st.write(f"**Predicted Class:** {CLASS_LABELS[predicted_class]}")
|
54 |
+
st.write(f"**Confidence Score:** {confidence:.2f}")
|
55 |
+
|
56 |
+
# Provide interpretation
|
57 |
+
if predicted_class == 2:
|
58 |
+
st.success("✅ No Brain Tumor Detected.")
|
59 |
+
else:
|
60 |
+
st.error(f"🚨 Brain Tumor Detected: **{CLASS_LABELS[predicted_class]}**. Consult a doctor.")
|
61 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
tensorflow
|
3 |
+
numpy
|
4 |
+
pillow
|
saved_model.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:63172564e417d6ee4208b1c5d1503a70cd3ab8a997f0d4be1ce170e8a0888bb3
|
3 |
+
size 213127952
|