Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,6 @@
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import os
|
3 |
import logging
|
@@ -8,7 +11,10 @@ from langchain_community.vectorstores import FAISS
|
|
8 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
9 |
from langchain.prompts import PromptTemplate
|
10 |
from langchain.llms import HuggingFaceHub
|
11 |
-
import
|
|
|
|
|
|
|
12 |
dotenv.load_dotenv()
|
13 |
|
14 |
# Load configuration from YAML
|
@@ -17,7 +23,6 @@ def load_config():
|
|
17 |
return yaml.safe_load(f)
|
18 |
|
19 |
config = load_config()
|
20 |
-
hf_token = os.getenv("Gem") # Store API token in .env
|
21 |
logging.basicConfig(level=logging.INFO)
|
22 |
|
23 |
# Load embedding model
|
@@ -31,31 +36,66 @@ def extract_text_from_pdf(file):
|
|
31 |
text += page.extract_text() or ""
|
32 |
return text.strip()
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
# Get interview questions and assess responses
|
35 |
-
def get_interview_response(jd_text, resume_text, candidate_response=None):
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
JOB DESCRIPTION:
|
40 |
{jd_text}
|
41 |
|
42 |
CANDIDATE PROFILE:
|
43 |
{resume_text}
|
44 |
|
45 |
-
|
46 |
-
2. Then, based on the job description, ask a **technical question**.
|
47 |
-
3. If the candidate has already responded, evaluate their answer and provide constructive feedback.
|
48 |
|
49 |
-
Maintain a professional yet friendly tone.
|
50 |
"""
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
if candidate_response:
|
58 |
-
|
|
|
|
|
|
|
59 |
|
60 |
llm = HuggingFaceHub(
|
61 |
repo_id=config["model_name"],
|
@@ -63,7 +103,17 @@ def get_interview_response(jd_text, resume_text, candidate_response=None):
|
|
63 |
huggingfacehub_api_token=hf_token
|
64 |
)
|
65 |
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
# Streamlit UI
|
69 |
st.set_page_config(page_title="AI Interviewer", layout="centered")
|
@@ -78,18 +128,43 @@ if jd_file and resume_file:
|
|
78 |
jd_text = extract_text_from_pdf(jd_file)
|
79 |
resume_text = extract_text_from_pdf(resume_file)
|
80 |
|
|
|
|
|
|
|
|
|
81 |
if "interview_history" not in st.session_state:
|
82 |
st.session_state["interview_history"] = []
|
|
|
83 |
first_question = get_interview_response(jd_text, resume_text)
|
84 |
st.session_state["interview_history"].append(("AI", first_question))
|
85 |
|
|
|
|
|
86 |
for role, msg in st.session_state["interview_history"]:
|
87 |
st.chat_message(role).write(msg)
|
88 |
|
89 |
query = st.chat_input("Your Response:")
|
90 |
-
|
91 |
if query:
|
92 |
response = get_interview_response(jd_text, resume_text, query)
|
93 |
st.session_state["interview_history"].append(("You", query))
|
94 |
st.session_state["interview_history"].append(("AI", response))
|
95 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import os
|
3 |
+
hf_token = os.getenv("Gem") # Store API token in .env
|
4 |
import streamlit as st
|
5 |
import os
|
6 |
import logging
|
|
|
11 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
12 |
from langchain.prompts import PromptTemplate
|
13 |
from langchain.llms import HuggingFaceHub
|
14 |
+
import random
|
15 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
16 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
17 |
+
|
18 |
dotenv.load_dotenv()
|
19 |
|
20 |
# Load configuration from YAML
|
|
|
23 |
return yaml.safe_load(f)
|
24 |
|
25 |
config = load_config()
|
|
|
26 |
logging.basicConfig(level=logging.INFO)
|
27 |
|
28 |
# Load embedding model
|
|
|
36 |
text += page.extract_text() or ""
|
37 |
return text.strip()
|
38 |
|
39 |
+
# Function to calculate matching score between job description and resume
|
40 |
+
def calculate_matching_score(jd_text, resume_text):
|
41 |
+
vectorizer = TfidfVectorizer().fit_transform([jd_text, resume_text])
|
42 |
+
score = cosine_similarity(vectorizer[0], vectorizer[1])[0][0] * 100
|
43 |
+
return round(score, 2)
|
44 |
+
|
45 |
+
# Function to generate final score based on user responses
|
46 |
+
def calculate_final_score(responses):
|
47 |
+
total_questions = len(responses)
|
48 |
+
correct_responses = sum(1 for response in responses if "good" in response.lower() or "correct" in response.lower())
|
49 |
+
return round((correct_responses / total_questions) * 100, 2) if total_questions > 0 else 0
|
50 |
+
|
51 |
# Get interview questions and assess responses
|
52 |
+
def get_interview_response(jd_text, resume_text, candidate_response=None, round_stage="intro", question_count=0):
|
53 |
+
technical_names = ["Alex", "Jordan", "Casey", "Morgan"]
|
54 |
+
hr_names = ["Taylor", "Jamie", "Riley", "Sam"]
|
55 |
+
|
56 |
+
if round_stage in ["technical", "coding"]:
|
57 |
+
interviewer_name = random.choice(technical_names)
|
58 |
+
role = "Technical Lead"
|
59 |
+
else:
|
60 |
+
interviewer_name = random.choice(hr_names)
|
61 |
+
role = "HR Manager"
|
62 |
+
|
63 |
+
prompt_template = f"""
|
64 |
+
My name is {interviewer_name}, and I am your {role} for this round.
|
65 |
+
|
66 |
JOB DESCRIPTION:
|
67 |
{jd_text}
|
68 |
|
69 |
CANDIDATE PROFILE:
|
70 |
{resume_text}
|
71 |
|
72 |
+
This is question {question_count+1} of 5.
|
|
|
|
|
73 |
|
|
|
74 |
"""
|
75 |
|
76 |
+
if question_count >= 5:
|
77 |
+
return f"{interviewer_name}: This round is complete. Moving to the next stage."
|
78 |
+
|
79 |
+
if round_stage == "intro":
|
80 |
+
prompt_template += f"{interviewer_name}: Let's start with an introduction. Tell me about yourself."
|
81 |
+
|
82 |
+
elif round_stage == "technical":
|
83 |
+
prompt_template += f"{interviewer_name}: Based on your resume and the job description, here is a technical question for you."
|
84 |
+
|
85 |
+
elif round_stage == "coding":
|
86 |
+
prompt_template += f"{interviewer_name}: Let's move to a coding problem relevant to your role."
|
87 |
+
|
88 |
+
elif round_stage == "hr":
|
89 |
+
prompt_template += f"{interviewer_name}: Now let's discuss some HR aspects, starting with your motivation for this role."
|
90 |
+
|
91 |
+
elif round_stage == "final_feedback":
|
92 |
+
prompt_template += "Summarize the candidate’s performance in both rounds in a structured format."
|
93 |
|
94 |
if candidate_response:
|
95 |
+
if candidate_response.lower() == "hint":
|
96 |
+
prompt_template += f"{interviewer_name}: Here is a helpful hint."
|
97 |
+
else:
|
98 |
+
prompt_template += f"The candidate answered: {candidate_response}. Assess the response and move to the next question."
|
99 |
|
100 |
llm = HuggingFaceHub(
|
101 |
repo_id=config["model_name"],
|
|
|
103 |
huggingfacehub_api_token=hf_token
|
104 |
)
|
105 |
|
106 |
+
response = llm(prompt_template).strip()
|
107 |
+
|
108 |
+
# Store the full assessment in a text file for admin review
|
109 |
+
with open("candidate_assessment.txt", "a") as f:
|
110 |
+
f.write(f"Round: {round_stage}, Question {question_count+1}\n")
|
111 |
+
f.write(f"Interviewer: {interviewer_name} ({role})\n")
|
112 |
+
f.write(f"Question: {prompt_template}\n")
|
113 |
+
f.write(f"Candidate Response: {candidate_response}\n")
|
114 |
+
f.write(f"Feedback: {response}\n\n")
|
115 |
+
|
116 |
+
return response if round_stage != "final_feedback" else f"{interviewer_name}: The interview is now complete."
|
117 |
|
118 |
# Streamlit UI
|
119 |
st.set_page_config(page_title="AI Interviewer", layout="centered")
|
|
|
128 |
jd_text = extract_text_from_pdf(jd_file)
|
129 |
resume_text = extract_text_from_pdf(resume_file)
|
130 |
|
131 |
+
# Calculate matching score
|
132 |
+
matching_score = calculate_matching_score(jd_text, resume_text)
|
133 |
+
|
134 |
+
# Store interview history & matching score
|
135 |
if "interview_history" not in st.session_state:
|
136 |
st.session_state["interview_history"] = []
|
137 |
+
st.session_state["responses"] = []
|
138 |
first_question = get_interview_response(jd_text, resume_text)
|
139 |
st.session_state["interview_history"].append(("AI", first_question))
|
140 |
|
141 |
+
st.write(f"**Matching Score:** {matching_score}%")
|
142 |
+
|
143 |
for role, msg in st.session_state["interview_history"]:
|
144 |
st.chat_message(role).write(msg)
|
145 |
|
146 |
query = st.chat_input("Your Response:")
|
147 |
+
|
148 |
if query:
|
149 |
response = get_interview_response(jd_text, resume_text, query)
|
150 |
st.session_state["interview_history"].append(("You", query))
|
151 |
st.session_state["interview_history"].append(("AI", response))
|
152 |
+
st.session_state["responses"].append(response) # Store responses for final score
|
153 |
+
st.rerun()
|
154 |
+
|
155 |
+
# Generate final score and store the results for download
|
156 |
+
if "responses" in st.session_state and len(st.session_state["responses"]) >= 5:
|
157 |
+
final_score = calculate_final_score(st.session_state["responses"])
|
158 |
+
|
159 |
+
# Store all results in a text file
|
160 |
+
file_path = "candidate_assessment.txt"
|
161 |
+
with open(file_path, "w") as f:
|
162 |
+
f.write(f"Matching Score: {matching_score}%\n")
|
163 |
+
f.write(f"Final Score: {final_score}%\n\n")
|
164 |
+
f.write("Interview Assessment:\n")
|
165 |
+
for role, msg in st.session_state["interview_history"]:
|
166 |
+
f.write(f"{role}: {msg}\n")
|
167 |
+
|
168 |
+
# Provide file download option
|
169 |
+
with open(file_path, "rb") as f:
|
170 |
+
st.download_button("Download Assessment", f, file_name="candidate_assessment.txt")
|