Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,3 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import os
|
| 3 |
import logging
|
|
@@ -8,7 +11,10 @@ from langchain_community.vectorstores import FAISS
|
|
| 8 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 9 |
from langchain.prompts import PromptTemplate
|
| 10 |
from langchain.llms import HuggingFaceHub
|
| 11 |
-
import
|
|
|
|
|
|
|
|
|
|
| 12 |
dotenv.load_dotenv()
|
| 13 |
|
| 14 |
# Load configuration from YAML
|
|
@@ -17,7 +23,6 @@ def load_config():
|
|
| 17 |
return yaml.safe_load(f)
|
| 18 |
|
| 19 |
config = load_config()
|
| 20 |
-
hf_token = os.getenv("Gem") # Store API token in .env
|
| 21 |
logging.basicConfig(level=logging.INFO)
|
| 22 |
|
| 23 |
# Load embedding model
|
|
@@ -31,31 +36,66 @@ def extract_text_from_pdf(file):
|
|
| 31 |
text += page.extract_text() or ""
|
| 32 |
return text.strip()
|
| 33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
# Get interview questions and assess responses
|
| 35 |
-
def get_interview_response(jd_text, resume_text, candidate_response=None):
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
JOB DESCRIPTION:
|
| 40 |
{jd_text}
|
| 41 |
|
| 42 |
CANDIDATE PROFILE:
|
| 43 |
{resume_text}
|
| 44 |
|
| 45 |
-
|
| 46 |
-
2. Then, based on the job description, ask a **technical question**.
|
| 47 |
-
3. If the candidate has already responded, evaluate their answer and provide constructive feedback.
|
| 48 |
|
| 49 |
-
Maintain a professional yet friendly tone.
|
| 50 |
"""
|
| 51 |
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
if candidate_response:
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
llm = HuggingFaceHub(
|
| 61 |
repo_id=config["model_name"],
|
|
@@ -63,7 +103,17 @@ def get_interview_response(jd_text, resume_text, candidate_response=None):
|
|
| 63 |
huggingfacehub_api_token=hf_token
|
| 64 |
)
|
| 65 |
|
| 66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
# Streamlit UI
|
| 69 |
st.set_page_config(page_title="AI Interviewer", layout="centered")
|
|
@@ -78,18 +128,43 @@ if jd_file and resume_file:
|
|
| 78 |
jd_text = extract_text_from_pdf(jd_file)
|
| 79 |
resume_text = extract_text_from_pdf(resume_file)
|
| 80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
if "interview_history" not in st.session_state:
|
| 82 |
st.session_state["interview_history"] = []
|
|
|
|
| 83 |
first_question = get_interview_response(jd_text, resume_text)
|
| 84 |
st.session_state["interview_history"].append(("AI", first_question))
|
| 85 |
|
|
|
|
|
|
|
| 86 |
for role, msg in st.session_state["interview_history"]:
|
| 87 |
st.chat_message(role).write(msg)
|
| 88 |
|
| 89 |
query = st.chat_input("Your Response:")
|
| 90 |
-
|
| 91 |
if query:
|
| 92 |
response = get_interview_response(jd_text, resume_text, query)
|
| 93 |
st.session_state["interview_history"].append(("You", query))
|
| 94 |
st.session_state["interview_history"].append(("AI", response))
|
| 95 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import os
|
| 3 |
+
hf_token = os.getenv("Gem") # Store API token in .env
|
| 4 |
import streamlit as st
|
| 5 |
import os
|
| 6 |
import logging
|
|
|
|
| 11 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 12 |
from langchain.prompts import PromptTemplate
|
| 13 |
from langchain.llms import HuggingFaceHub
|
| 14 |
+
import random
|
| 15 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 16 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
| 17 |
+
|
| 18 |
dotenv.load_dotenv()
|
| 19 |
|
| 20 |
# Load configuration from YAML
|
|
|
|
| 23 |
return yaml.safe_load(f)
|
| 24 |
|
| 25 |
config = load_config()
|
|
|
|
| 26 |
logging.basicConfig(level=logging.INFO)
|
| 27 |
|
| 28 |
# Load embedding model
|
|
|
|
| 36 |
text += page.extract_text() or ""
|
| 37 |
return text.strip()
|
| 38 |
|
| 39 |
+
# Function to calculate matching score between job description and resume
|
| 40 |
+
def calculate_matching_score(jd_text, resume_text):
|
| 41 |
+
vectorizer = TfidfVectorizer().fit_transform([jd_text, resume_text])
|
| 42 |
+
score = cosine_similarity(vectorizer[0], vectorizer[1])[0][0] * 100
|
| 43 |
+
return round(score, 2)
|
| 44 |
+
|
| 45 |
+
# Function to generate final score based on user responses
|
| 46 |
+
def calculate_final_score(responses):
|
| 47 |
+
total_questions = len(responses)
|
| 48 |
+
correct_responses = sum(1 for response in responses if "good" in response.lower() or "correct" in response.lower())
|
| 49 |
+
return round((correct_responses / total_questions) * 100, 2) if total_questions > 0 else 0
|
| 50 |
+
|
| 51 |
# Get interview questions and assess responses
|
| 52 |
+
def get_interview_response(jd_text, resume_text, candidate_response=None, round_stage="intro", question_count=0):
|
| 53 |
+
technical_names = ["Alex", "Jordan", "Casey", "Morgan"]
|
| 54 |
+
hr_names = ["Taylor", "Jamie", "Riley", "Sam"]
|
| 55 |
+
|
| 56 |
+
if round_stage in ["technical", "coding"]:
|
| 57 |
+
interviewer_name = random.choice(technical_names)
|
| 58 |
+
role = "Technical Lead"
|
| 59 |
+
else:
|
| 60 |
+
interviewer_name = random.choice(hr_names)
|
| 61 |
+
role = "HR Manager"
|
| 62 |
+
|
| 63 |
+
prompt_template = f"""
|
| 64 |
+
My name is {interviewer_name}, and I am your {role} for this round.
|
| 65 |
+
|
| 66 |
JOB DESCRIPTION:
|
| 67 |
{jd_text}
|
| 68 |
|
| 69 |
CANDIDATE PROFILE:
|
| 70 |
{resume_text}
|
| 71 |
|
| 72 |
+
This is question {question_count+1} of 5.
|
|
|
|
|
|
|
| 73 |
|
|
|
|
| 74 |
"""
|
| 75 |
|
| 76 |
+
if question_count >= 5:
|
| 77 |
+
return f"{interviewer_name}: This round is complete. Moving to the next stage."
|
| 78 |
+
|
| 79 |
+
if round_stage == "intro":
|
| 80 |
+
prompt_template += f"{interviewer_name}: Let's start with an introduction. Tell me about yourself."
|
| 81 |
+
|
| 82 |
+
elif round_stage == "technical":
|
| 83 |
+
prompt_template += f"{interviewer_name}: Based on your resume and the job description, here is a technical question for you."
|
| 84 |
+
|
| 85 |
+
elif round_stage == "coding":
|
| 86 |
+
prompt_template += f"{interviewer_name}: Let's move to a coding problem relevant to your role."
|
| 87 |
+
|
| 88 |
+
elif round_stage == "hr":
|
| 89 |
+
prompt_template += f"{interviewer_name}: Now let's discuss some HR aspects, starting with your motivation for this role."
|
| 90 |
+
|
| 91 |
+
elif round_stage == "final_feedback":
|
| 92 |
+
prompt_template += "Summarize the candidate’s performance in both rounds in a structured format."
|
| 93 |
|
| 94 |
if candidate_response:
|
| 95 |
+
if candidate_response.lower() == "hint":
|
| 96 |
+
prompt_template += f"{interviewer_name}: Here is a helpful hint."
|
| 97 |
+
else:
|
| 98 |
+
prompt_template += f"The candidate answered: {candidate_response}. Assess the response and move to the next question."
|
| 99 |
|
| 100 |
llm = HuggingFaceHub(
|
| 101 |
repo_id=config["model_name"],
|
|
|
|
| 103 |
huggingfacehub_api_token=hf_token
|
| 104 |
)
|
| 105 |
|
| 106 |
+
response = llm(prompt_template).strip()
|
| 107 |
+
|
| 108 |
+
# Store the full assessment in a text file for admin review
|
| 109 |
+
with open("candidate_assessment.txt", "a") as f:
|
| 110 |
+
f.write(f"Round: {round_stage}, Question {question_count+1}\n")
|
| 111 |
+
f.write(f"Interviewer: {interviewer_name} ({role})\n")
|
| 112 |
+
f.write(f"Question: {prompt_template}\n")
|
| 113 |
+
f.write(f"Candidate Response: {candidate_response}\n")
|
| 114 |
+
f.write(f"Feedback: {response}\n\n")
|
| 115 |
+
|
| 116 |
+
return response if round_stage != "final_feedback" else f"{interviewer_name}: The interview is now complete."
|
| 117 |
|
| 118 |
# Streamlit UI
|
| 119 |
st.set_page_config(page_title="AI Interviewer", layout="centered")
|
|
|
|
| 128 |
jd_text = extract_text_from_pdf(jd_file)
|
| 129 |
resume_text = extract_text_from_pdf(resume_file)
|
| 130 |
|
| 131 |
+
# Calculate matching score
|
| 132 |
+
matching_score = calculate_matching_score(jd_text, resume_text)
|
| 133 |
+
|
| 134 |
+
# Store interview history & matching score
|
| 135 |
if "interview_history" not in st.session_state:
|
| 136 |
st.session_state["interview_history"] = []
|
| 137 |
+
st.session_state["responses"] = []
|
| 138 |
first_question = get_interview_response(jd_text, resume_text)
|
| 139 |
st.session_state["interview_history"].append(("AI", first_question))
|
| 140 |
|
| 141 |
+
st.write(f"**Matching Score:** {matching_score}%")
|
| 142 |
+
|
| 143 |
for role, msg in st.session_state["interview_history"]:
|
| 144 |
st.chat_message(role).write(msg)
|
| 145 |
|
| 146 |
query = st.chat_input("Your Response:")
|
| 147 |
+
|
| 148 |
if query:
|
| 149 |
response = get_interview_response(jd_text, resume_text, query)
|
| 150 |
st.session_state["interview_history"].append(("You", query))
|
| 151 |
st.session_state["interview_history"].append(("AI", response))
|
| 152 |
+
st.session_state["responses"].append(response) # Store responses for final score
|
| 153 |
+
st.rerun()
|
| 154 |
+
|
| 155 |
+
# Generate final score and store the results for download
|
| 156 |
+
if "responses" in st.session_state and len(st.session_state["responses"]) >= 5:
|
| 157 |
+
final_score = calculate_final_score(st.session_state["responses"])
|
| 158 |
+
|
| 159 |
+
# Store all results in a text file
|
| 160 |
+
file_path = "candidate_assessment.txt"
|
| 161 |
+
with open(file_path, "w") as f:
|
| 162 |
+
f.write(f"Matching Score: {matching_score}%\n")
|
| 163 |
+
f.write(f"Final Score: {final_score}%\n\n")
|
| 164 |
+
f.write("Interview Assessment:\n")
|
| 165 |
+
for role, msg in st.session_state["interview_history"]:
|
| 166 |
+
f.write(f"{role}: {msg}\n")
|
| 167 |
+
|
| 168 |
+
# Provide file download option
|
| 169 |
+
with open(file_path, "rb") as f:
|
| 170 |
+
st.download_button("Download Assessment", f, file_name="candidate_assessment.txt")
|