Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,9 +3,8 @@ import cv2
|
|
3 |
import joblib
|
4 |
import mediapipe as mp
|
5 |
import numpy as np
|
6 |
-
from streamlit_webrtc import webrtc_streamer, VideoTransformerBase
|
7 |
|
8 |
-
# Load
|
9 |
model = joblib.load("pose_classifier.joblib")
|
10 |
label_encoder = joblib.load("label_encoder.joblib")
|
11 |
|
@@ -13,34 +12,49 @@ label_encoder = joblib.load("label_encoder.joblib")
|
|
13 |
mp_pose = mp.solutions.pose
|
14 |
pose = mp_pose.Pose()
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
20 |
|
21 |
-
|
22 |
-
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
pose_data = [j.x for j in landmarks] + [j.y for j in landmarks] + \
|
27 |
-
[j.z for j in landmarks] + [j.visibility for j in landmarks]
|
28 |
|
29 |
-
|
|
|
|
|
|
|
|
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
predicted_label = label_encoder.inverse_transform(y_pred)[0]
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 3)
|
38 |
|
39 |
-
|
|
|
|
|
|
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
-
|
46 |
-
|
|
|
3 |
import joblib
|
4 |
import mediapipe as mp
|
5 |
import numpy as np
|
|
|
6 |
|
7 |
+
# Load trained model and label encoder
|
8 |
model = joblib.load("pose_classifier.joblib")
|
9 |
label_encoder = joblib.load("label_encoder.joblib")
|
10 |
|
|
|
12 |
mp_pose = mp.solutions.pose
|
13 |
pose = mp_pose.Pose()
|
14 |
|
15 |
+
# Streamlit UI
|
16 |
+
st.title("Live Pose Classification")
|
17 |
+
st.write("Real-time pose detection using OpenCV and MediaPipe.")
|
|
|
18 |
|
19 |
+
# OpenCV Video Capture
|
20 |
+
cap = cv2.VideoCapture(0)
|
21 |
|
22 |
+
# Streamlit Image Display
|
23 |
+
frame_placeholder = st.empty()
|
|
|
|
|
24 |
|
25 |
+
while cap.isOpened():
|
26 |
+
ret, frame = cap.read()
|
27 |
+
if not ret:
|
28 |
+
st.warning("Failed to capture video. Check your camera.")
|
29 |
+
break
|
30 |
|
31 |
+
# Convert frame to RGB
|
32 |
+
img_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
|
|
33 |
|
34 |
+
# Process frame with MediaPipe Pose
|
35 |
+
results = pose.process(img_rgb)
|
|
|
36 |
|
37 |
+
if results.pose_landmarks:
|
38 |
+
landmarks = results.pose_landmarks.landmark
|
39 |
+
pose_data = [j.x for j in landmarks] + [j.y for j in landmarks] + \
|
40 |
+
[j.z for j in landmarks] + [j.visibility for j in landmarks]
|
41 |
|
42 |
+
pose_data = np.array(pose_data).reshape(1, -1)
|
43 |
+
|
44 |
+
# Predict pose
|
45 |
+
y_pred = model.predict(pose_data)
|
46 |
+
predicted_label = label_encoder.inverse_transform(y_pred)[0]
|
47 |
+
|
48 |
+
# Display predicted label
|
49 |
+
cv2.putText(frame, f"Pose: {predicted_label}", (20, 50),
|
50 |
+
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 3)
|
51 |
+
|
52 |
+
# Display frame in Streamlit
|
53 |
+
frame_placeholder.image(frame, channels="BGR")
|
54 |
+
|
55 |
+
# Break loop if user stops execution
|
56 |
+
if st.button("Stop Camera"):
|
57 |
+
break
|
58 |
|
59 |
+
cap.release()
|
60 |
+
cv2.destroyAllWindows()
|