Spaces:
Sleeping
Sleeping
File size: 1,735 Bytes
3fa9239 1ec5d32 f406f79 1ec5d32 3fa9239 1ec5d32 3fa9239 1ec5d32 3fa9239 1ec5d32 3fa9239 1ec5d32 3fa9239 1ec5d32 3fa9239 1ec5d32 3fa9239 1ec5d32 7c44cab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
import fitz # PyMuPDF
import google.generativeai as genai
import streamlit as st
def extract_text_from_pdf(pdf_path):
"""Extracts text from a PDF file."""
text = ""
try:
with fitz.open(pdf_path) as doc:
for page in doc:
text += page.get_text("text") + "\n"
except Exception as e:
st.error(f"Error reading PDF: {e}")
return text
def analyze_health_data(text):
"""Analyzes extracted text using Google Generative AI (Free Tier API)."""
try:
# Get a free API key from Google AI Studio: https://aistudio.google.com/
genai.configure(api_key="AIzaSyAY6ZYxOzVV5N7mBZzDJ96WEPJGfuFx-mU") # Replace with free API key
model = genai.GenerativeModel("gemini-pro") # Choose appropriate model
response = model.generate_content(
f"Analyze this blood report and provide trends, risks, and health suggestions:\n{text}"
)
return response.text
except Exception as e:
return f"Error in LLM response: {e}"
def main():
st.title("Health Report Analyzer")
uploaded_file = st.file_uploader("Upload your health report (PDF)", type=["pdf"])
if uploaded_file is not None:
with open("temp.pdf", "wb") as f:
f.write(uploaded_file.getbuffer())
extracted_text = extract_text_from_pdf("temp.pdf")
st.subheader("Extracted Report Text:")
st.text_area("Extracted Text", extracted_text[:1000], height=200)
if st.button("Analyze Report"):
with st.spinner("Analyzing..."):
analysis = analyze_health_data(extracted_text)
st.subheader("Health Analysis:")
st.write(analysis)
if __name__ == "__main__":
main() |