Report-Analyzer / app.py
rohitashva's picture
Update app.py
f406f79 verified
raw
history blame
3.05 kB
import streamlit as st
import google.generativeai as genai
from transformers import AutoModel, AutoTokenizer
from pdf2image import convert_from_path
import torch
import os
import os
import subprocess
import streamlit as st
import google.generativeai as genai
from transformers import AutoModel, AutoTokenizer
from pdf2image import convert_from_path
import torch
# Ensure Poppler is installed
def install_poppler():
if not os.path.exists("/usr/bin/pdftoppm"): # Check if Poppler is installed
st.warning("Installing Poppler for PDF processing...")
subprocess.run(["apt-get", "update"])
subprocess.run(["apt-get", "install", "-y", "poppler-utils"])
# Load the OCR model
tokenizer = AutoTokenizer.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True)
model = AutoModel.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True, low_cpu_mem_usage=True,
device_map="cuda" if torch.cuda.is_available() else "cpu",
use_safetensors=True, pad_token_id=tokenizer.eos_token_id).eval()
def extract_text_from_pdf(pdf_path):
"""Converts PDF pages to images and extracts text using the GOT-OCR2_0 model."""
text = ""
try:
images = convert_from_path(pdf_path)
for idx, image in enumerate(images):
image_path = f"temp_page_{idx}.png"
image.save(image_path, "PNG")
extracted_text = model.chat(tokenizer, image_path, ocr_type="ocr")
text += extracted_text + "\n"
os.remove(image_path) # Clean up the temporary image file
except Exception as e:
st.error(f"Error extracting text: {e}")
return text
def analyze_health_data(text):
"""Analyzes extracted text using Google Generative AI (Free Tier API)."""
try:
genai.configure(api_key="AIzaSyAY6ZYxOzVV5N7mBZzDJ96WEPJGfuFx-mU") # Replace with your Google API key
model = genai.GenerativeModel("gemini-pro")
response = model.generate_content(
f"Analyze this medical report and provide trends, risks, and health suggestions:\n{text}"
)
return response.text
except Exception as e:
return f"Error in LLM response: {e}"
def main():
st.title("Health Report Analyzer")
uploaded_file = st.file_uploader("Upload your health report (PDF)", type=["pdf"])
if uploaded_file is not None:
pdf_path = "temp.pdf"
with open(pdf_path, "wb") as f:
f.write(uploaded_file.getbuffer())
with st.spinner("Extracting text from the report..."):
extracted_text = extract_text_from_pdf(pdf_path)
st.subheader("Extracted Report Text:")
st.text_area("Extracted Text", extracted_text[:1000], height=200)
if st.button("Analyze Report"):
with st.spinner("Analyzing..."):
analysis = analyze_health_data(extracted_text)
st.subheader("Health Analysis:")
st.write(analysis)
if __name__ == "__main__":
main()