Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,35 +1,25 @@
|
|
1 |
-
|
2 |
import streamlit as st
|
3 |
import nltk
|
4 |
from gensim.models.doc2vec import Doc2Vec, TaggedDocument
|
5 |
from nltk.tokenize import word_tokenize
|
6 |
-
import os
|
7 |
import PyPDF2
|
8 |
import pandas as pd
|
9 |
import re
|
10 |
import matplotlib.pyplot as plt
|
11 |
import seaborn as sns
|
12 |
import spacy
|
13 |
-
from PyPDF2 import PdfReader
|
14 |
-
from io import BytesIO
|
15 |
-
import re
|
16 |
-
import pandas as pd
|
17 |
-
import matplotlib.pyplot as plt
|
18 |
-
import seaborn as sns
|
19 |
|
|
|
20 |
nltk.download('punkt')
|
21 |
|
22 |
-
|
23 |
-
nlp_model_path = "en_Resume_Matching_Keywords"
|
24 |
-
nlp = spacy.load(nlp_model_path)
|
25 |
-
|
26 |
float_regex = re.compile(r'^\d{1,2}(\.\d{1,2})?$')
|
27 |
email_pattern = r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b'
|
28 |
-
float_digit_regex = re.compile(r'^\d
|
29 |
-
email_with_phone_regex =
|
30 |
-
r'(\d{10}).|.(\d{10})')
|
31 |
-
|
32 |
|
|
|
33 |
def extract_text_from_pdf(pdf_file):
|
34 |
pdf_reader = PyPDF2.PdfReader(pdf_file)
|
35 |
text = ""
|
@@ -37,92 +27,74 @@ def extract_text_from_pdf(pdf_file):
|
|
37 |
text += pdf_reader.pages[page_num].extract_text()
|
38 |
return text
|
39 |
|
40 |
-
|
41 |
def tokenize_text(text, nlp_model):
|
42 |
doc = nlp_model(text, disable=["tagger", "parser"])
|
43 |
tokens = [(token.text.lower(), token.label_) for token in doc.ents]
|
44 |
return tokens
|
45 |
|
46 |
-
|
47 |
def extract_cgpa(resume_text):
|
48 |
-
# Define a regular expression pattern for CGPA extraction
|
49 |
cgpa_pattern = r'\b(?:CGPA|GPA|C\.G\.PA|Cumulative GPA)\s*:?[\s-]([0-9]+(?:\.[0-9]+)?)\b|\b([0-9]+(?:\.[0-9]+)?)\s(?:CGPA|GPA)\b'
|
50 |
-
|
51 |
-
# Search for CGPA pattern in the text
|
52 |
match = re.search(cgpa_pattern, resume_text, re.IGNORECASE)
|
53 |
-
|
54 |
-
# Check if a match is found
|
55 |
if match:
|
56 |
-
# Extract CGPA value
|
57 |
cgpa = match.group(1) if match.group(1) else match.group(2)
|
58 |
return float(cgpa)
|
59 |
else:
|
60 |
return None
|
61 |
|
62 |
-
|
63 |
def extract_skills(text, skills_keywords):
|
64 |
-
skills = [skill.lower()
|
65 |
-
for skill in skills_keywords if re.search(r'\b' + re.escape(skill.lower()) + r'\b', text.lower())]
|
66 |
return skills
|
67 |
|
68 |
-
|
69 |
def preprocess_text(text):
|
70 |
return word_tokenize(text.lower())
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
def train_doc2vec_model(documents):
|
77 |
model = Doc2Vec(vector_size=20, min_count=2, epochs=50)
|
78 |
model.build_vocab(documents)
|
79 |
-
model.train(documents, total_examples=model.corpus_count,
|
80 |
-
epochs=model.epochs)
|
81 |
return model
|
82 |
|
83 |
-
|
84 |
def calculate_similarity(model, text1, text2):
|
85 |
vector1 = model.infer_vector(preprocess_text(text1))
|
86 |
vector2 = model.infer_vector(preprocess_text(text2))
|
87 |
return model.dv.cosine_similarities(vector1, [vector2])[0]
|
88 |
|
89 |
-
|
90 |
def accuracy_calculation(true_positives, false_positives, false_negatives):
|
91 |
total = true_positives + false_positives + false_negatives
|
92 |
accuracy = true_positives / total if total != 0 else 0
|
93 |
return accuracy
|
94 |
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
# Streamlit Frontend
|
101 |
st.markdown("# Resume Matching Tool ππ")
|
102 |
st.markdown("An application to match resumes with a job description.")
|
103 |
|
104 |
# Sidebar - File Upload for Resumes
|
105 |
st.sidebar.markdown("## Upload Resumes PDF")
|
106 |
-
resumes_files = st.sidebar.file_uploader(
|
107 |
-
"Upload Resumes PDF", type=["pdf"], accept_multiple_files=True)
|
108 |
|
109 |
if resumes_files:
|
110 |
# Sidebar - File Upload for Job Descriptions
|
111 |
st.sidebar.markdown("## Upload Job Description PDF")
|
112 |
-
job_descriptions_file = st.sidebar.file_uploader(
|
113 |
-
"Upload Job Description PDF", type=["pdf"])
|
114 |
|
115 |
if job_descriptions_file:
|
116 |
-
|
|
|
|
|
|
|
117 |
# Backend Processing
|
118 |
job_description_text = extract_text_from_pdf(job_descriptions_file)
|
119 |
-
resumes_texts = [extract_text_from_pdf(
|
120 |
-
resume_file) for resume_file in resumes_files]
|
121 |
job_description_text = extract_text_from_pdf(job_descriptions_file)
|
122 |
job_description_tokens = tokenize_text(job_description_text, nlp)
|
123 |
|
124 |
-
# st.subheader("Matching Keywords")
|
125 |
-
|
126 |
# Initialize counters
|
127 |
overall_skill_matches = 0
|
128 |
overall_qualification_matches = 0
|
@@ -134,9 +106,9 @@ if resumes_files:
|
|
134 |
|
135 |
for job_token, job_label in job_description_tokens:
|
136 |
if job_label == 'QUALIFICATION':
|
137 |
-
job_qualifications.add(job_token)
|
138 |
elif job_label == 'SKILLS':
|
139 |
-
job_skills.add(job_token)
|
140 |
|
141 |
job_skills_number = len(job_skills)
|
142 |
job_qualifications_number = len(job_qualifications)
|
@@ -164,28 +136,38 @@ if resumes_files:
|
|
164 |
# Compare the tokens in the resume with the job description
|
165 |
for resume_token, resume_label in resume_tokens:
|
166 |
for job_token, job_label in job_description_tokens:
|
167 |
-
if resume_token.lower() == job_token.lower():
|
168 |
if resume_label == 'SKILLS':
|
169 |
-
matched_skills.add(resume_token)
|
170 |
elif resume_label == 'QUALIFICATION':
|
171 |
-
matched_qualifications.add(resume_token)
|
172 |
-
elif resume_label == 'CGPA' and bool(float_regex.match(resume_token)):
|
173 |
-
cgpa = resume_token
|
174 |
elif resume_label == 'PHONE' and bool(float_digit_regex.match(resume_token)):
|
175 |
-
phone.add(resume_token)
|
176 |
elif resume_label == 'QUALIFICATION':
|
177 |
-
matched_qualifications.add(resume_token)
|
178 |
|
179 |
skillMatch = len(matched_skills)
|
180 |
qualificationMatch = len(matched_qualifications)
|
181 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
# Increment overall counters based on matches
|
183 |
overall_skill_matches += skillMatch
|
184 |
overall_qualification_matches += qualificationMatch
|
185 |
|
186 |
# Add count of matched skills for this resume to the list
|
187 |
-
skills_counts_all_resumes.append(
|
188 |
-
[resume_text.count(skill.lower()) for skill in job_skills])
|
189 |
|
190 |
# Create a dictionary for the current resume and append to the results list
|
191 |
result_dict = {
|
@@ -205,8 +187,7 @@ if resumes_files:
|
|
205 |
# Display overall matches
|
206 |
st.subheader("Overall Matches")
|
207 |
st.write(f"Total Skill Matches: {overall_skill_matches}")
|
208 |
-
st.write(
|
209 |
-
f"Total Qualification Matches: {overall_qualification_matches}")
|
210 |
st.write(f"Job Qualifications: {job_qualifications}")
|
211 |
st.write(f"Job Skills: {job_skills}")
|
212 |
|
@@ -214,19 +195,14 @@ if resumes_files:
|
|
214 |
results_df = pd.DataFrame(results_list)
|
215 |
st.subheader("Individual Results")
|
216 |
st.dataframe(results_df)
|
217 |
-
tagged_resumes = [TaggedDocument(words=preprocess_text(
|
218 |
-
text), tags=[str(i)]) for i, text in enumerate(resumes_texts)]
|
219 |
model_resumes = train_doc2vec_model(tagged_resumes)
|
220 |
|
221 |
-
|
222 |
-
|
223 |
st.subheader("\nHeatmap:")
|
224 |
|
225 |
# Get skills keywords from user input
|
226 |
-
skills_keywords_input = st.text_input(
|
227 |
-
|
228 |
-
skills_keywords = [skill.strip()
|
229 |
-
for skill in skills_keywords_input.split(',') if skill.strip()]
|
230 |
|
231 |
if skills_keywords:
|
232 |
# Calculate the similarity score between each skill keyword and the resume text
|
@@ -234,20 +210,16 @@ if resumes_files:
|
|
234 |
for resume_text in resumes_texts:
|
235 |
resume_text_similarity_scores = []
|
236 |
for skill in skills_keywords:
|
237 |
-
similarity_score = calculate_similarity(
|
238 |
-
model_resumes, resume_text, skill)
|
239 |
resume_text_similarity_scores.append(similarity_score)
|
240 |
skills_similarity_scores.append(resume_text_similarity_scores)
|
241 |
|
242 |
# Create a DataFrame with the similarity scores and set the index to the names of the PDFs
|
243 |
-
skills_similarity_df = pd.DataFrame(
|
244 |
-
skills_similarity_scores, columns=skills_keywords, index=[resume_file.name for resume_file in resumes_files])
|
245 |
|
246 |
# Plot the heatmap
|
247 |
fig, ax = plt.subplots(figsize=(12, 8))
|
248 |
-
|
249 |
-
sns.heatmap(skills_similarity_df,
|
250 |
-
cmap='YlGnBu', annot=True, fmt=".2f", ax=ax)
|
251 |
ax.set_title('Heatmap for Skills Similarity')
|
252 |
ax.set_xlabel('Skills')
|
253 |
ax.set_ylabel('Resumes')
|
@@ -263,4 +235,4 @@ if resumes_files:
|
|
263 |
else:
|
264 |
st.warning("Please upload the Job Description PDF to proceed.")
|
265 |
else:
|
266 |
-
st.warning("Please upload Resumes PDF to proceed.")
|
|
|
1 |
+
# Import necessary libraries
|
2 |
import streamlit as st
|
3 |
import nltk
|
4 |
from gensim.models.doc2vec import Doc2Vec, TaggedDocument
|
5 |
from nltk.tokenize import word_tokenize
|
|
|
6 |
import PyPDF2
|
7 |
import pandas as pd
|
8 |
import re
|
9 |
import matplotlib.pyplot as plt
|
10 |
import seaborn as sns
|
11 |
import spacy
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
+
# Download necessary NLTK data
|
14 |
nltk.download('punkt')
|
15 |
|
16 |
+
# Define regular expressions for pattern matching
|
|
|
|
|
|
|
17 |
float_regex = re.compile(r'^\d{1,2}(\.\d{1,2})?$')
|
18 |
email_pattern = r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b'
|
19 |
+
float_digit_regex = re.compile(r'^\d{10}$')
|
20 |
+
email_with_phone_regex = re.compile(r'(\d{10}).|.(\d{10})')
|
|
|
|
|
21 |
|
22 |
+
# Function to extract text from a PDF file
|
23 |
def extract_text_from_pdf(pdf_file):
|
24 |
pdf_reader = PyPDF2.PdfReader(pdf_file)
|
25 |
text = ""
|
|
|
27 |
text += pdf_reader.pages[page_num].extract_text()
|
28 |
return text
|
29 |
|
30 |
+
# Function to tokenize text using the NLP model
|
31 |
def tokenize_text(text, nlp_model):
|
32 |
doc = nlp_model(text, disable=["tagger", "parser"])
|
33 |
tokens = [(token.text.lower(), token.label_) for token in doc.ents]
|
34 |
return tokens
|
35 |
|
36 |
+
# Function to extract CGPA from a resume
|
37 |
def extract_cgpa(resume_text):
|
|
|
38 |
cgpa_pattern = r'\b(?:CGPA|GPA|C\.G\.PA|Cumulative GPA)\s*:?[\s-]([0-9]+(?:\.[0-9]+)?)\b|\b([0-9]+(?:\.[0-9]+)?)\s(?:CGPA|GPA)\b'
|
|
|
|
|
39 |
match = re.search(cgpa_pattern, resume_text, re.IGNORECASE)
|
|
|
|
|
40 |
if match:
|
|
|
41 |
cgpa = match.group(1) if match.group(1) else match.group(2)
|
42 |
return float(cgpa)
|
43 |
else:
|
44 |
return None
|
45 |
|
46 |
+
# Function to extract skills from a resume
|
47 |
def extract_skills(text, skills_keywords):
|
48 |
+
skills = [skill.lower() for skill in skills_keywords if re.search(r'\b' + re.escape(skill.lower()) + r'\b', text.lower())]
|
|
|
49 |
return skills
|
50 |
|
51 |
+
# Function to preprocess text
|
52 |
def preprocess_text(text):
|
53 |
return word_tokenize(text.lower())
|
54 |
|
55 |
+
# Function to train a Doc2Vec model
|
|
|
|
|
|
|
56 |
def train_doc2vec_model(documents):
|
57 |
model = Doc2Vec(vector_size=20, min_count=2, epochs=50)
|
58 |
model.build_vocab(documents)
|
59 |
+
model.train(documents, total_examples=model.corpus_count, epochs=model.epochs)
|
|
|
60 |
return model
|
61 |
|
62 |
+
# Function to calculate similarity between two texts
|
63 |
def calculate_similarity(model, text1, text2):
|
64 |
vector1 = model.infer_vector(preprocess_text(text1))
|
65 |
vector2 = model.infer_vector(preprocess_text(text2))
|
66 |
return model.dv.cosine_similarities(vector1, [vector2])[0]
|
67 |
|
68 |
+
# Function to calculate accuracy
|
69 |
def accuracy_calculation(true_positives, false_positives, false_negatives):
|
70 |
total = true_positives + false_positives + false_negatives
|
71 |
accuracy = true_positives / total if total != 0 else 0
|
72 |
return accuracy
|
73 |
|
|
|
|
|
|
|
|
|
|
|
74 |
# Streamlit Frontend
|
75 |
st.markdown("# Resume Matching Tool ππ")
|
76 |
st.markdown("An application to match resumes with a job description.")
|
77 |
|
78 |
# Sidebar - File Upload for Resumes
|
79 |
st.sidebar.markdown("## Upload Resumes PDF")
|
80 |
+
resumes_files = st.sidebar.file_uploader("Upload Resumes PDF", type=["pdf"], accept_multiple_files=True)
|
|
|
81 |
|
82 |
if resumes_files:
|
83 |
# Sidebar - File Upload for Job Descriptions
|
84 |
st.sidebar.markdown("## Upload Job Description PDF")
|
85 |
+
job_descriptions_file = st.sidebar.file_uploader("Upload Job Description PDF", type=["pdf"])
|
|
|
86 |
|
87 |
if job_descriptions_file:
|
88 |
+
# Load the pre-trained NLP model
|
89 |
+
nlp_model_path = "en_Resume_Matching_Keywords"
|
90 |
+
nlp = spacy.load(nlp_model_path)
|
91 |
+
|
92 |
# Backend Processing
|
93 |
job_description_text = extract_text_from_pdf(job_descriptions_file)
|
94 |
+
resumes_texts = [extract_text_from_pdf(resume_file) for resume_file in resumes_files]
|
|
|
95 |
job_description_text = extract_text_from_pdf(job_descriptions_file)
|
96 |
job_description_tokens = tokenize_text(job_description_text, nlp)
|
97 |
|
|
|
|
|
98 |
# Initialize counters
|
99 |
overall_skill_matches = 0
|
100 |
overall_qualification_matches = 0
|
|
|
106 |
|
107 |
for job_token, job_label in job_description_tokens:
|
108 |
if job_label == 'QUALIFICATION':
|
109 |
+
job_qualifications.add(job_token.replace('\n', ' '))
|
110 |
elif job_label == 'SKILLS':
|
111 |
+
job_skills.add(job_token.replace('\n', ' '))
|
112 |
|
113 |
job_skills_number = len(job_skills)
|
114 |
job_qualifications_number = len(job_qualifications)
|
|
|
136 |
# Compare the tokens in the resume with the job description
|
137 |
for resume_token, resume_label in resume_tokens:
|
138 |
for job_token, job_label in job_description_tokens:
|
139 |
+
if resume_token.lower().replace('\n', ' ') == job_token.lower().replace('\n', ' '):
|
140 |
if resume_label == 'SKILLS':
|
141 |
+
matched_skills.add(resume_token.replace('\n', ' '))
|
142 |
elif resume_label == 'QUALIFICATION':
|
143 |
+
matched_qualifications.add(resume_token.replace('\n', ' '))
|
|
|
|
|
144 |
elif resume_label == 'PHONE' and bool(float_digit_regex.match(resume_token)):
|
145 |
+
phone.add(resume_token)
|
146 |
elif resume_label == 'QUALIFICATION':
|
147 |
+
matched_qualifications.add(resume_token.replace('\n', ' '))
|
148 |
|
149 |
skillMatch = len(matched_skills)
|
150 |
qualificationMatch = len(matched_qualifications)
|
151 |
|
152 |
+
# Convert the list of emails to a set
|
153 |
+
email_set = set(re.findall(email_pattern, resume_text.replace('\n', ' ')))
|
154 |
+
email.update(email_set)
|
155 |
+
|
156 |
+
numberphone=""
|
157 |
+
for email_str in email:
|
158 |
+
numberphone = email_with_phone_regex.search(email_str)
|
159 |
+
if numberphone:
|
160 |
+
email.remove(email_str)
|
161 |
+
val=numberphone.group(1) or numberphone.group(2)
|
162 |
+
phone.add(val)
|
163 |
+
email.add(email_str.strip(val))
|
164 |
+
|
165 |
# Increment overall counters based on matches
|
166 |
overall_skill_matches += skillMatch
|
167 |
overall_qualification_matches += qualificationMatch
|
168 |
|
169 |
# Add count of matched skills for this resume to the list
|
170 |
+
skills_counts_all_resumes.append([resume_text.count(skill.lower()) for skill in job_skills])
|
|
|
171 |
|
172 |
# Create a dictionary for the current resume and append to the results list
|
173 |
result_dict = {
|
|
|
187 |
# Display overall matches
|
188 |
st.subheader("Overall Matches")
|
189 |
st.write(f"Total Skill Matches: {overall_skill_matches}")
|
190 |
+
st.write(f"Total Qualification Matches: {overall_qualification_matches}")
|
|
|
191 |
st.write(f"Job Qualifications: {job_qualifications}")
|
192 |
st.write(f"Job Skills: {job_skills}")
|
193 |
|
|
|
195 |
results_df = pd.DataFrame(results_list)
|
196 |
st.subheader("Individual Results")
|
197 |
st.dataframe(results_df)
|
198 |
+
tagged_resumes = [TaggedDocument(words=preprocess_text(text), tags=[str(i)]) for i, text in enumerate(resumes_texts)]
|
|
|
199 |
model_resumes = train_doc2vec_model(tagged_resumes)
|
200 |
|
|
|
|
|
201 |
st.subheader("\nHeatmap:")
|
202 |
|
203 |
# Get skills keywords from user input
|
204 |
+
skills_keywords_input = st.text_input("Enter skills keywords separated by commas (e.g., python, java, machine learning):")
|
205 |
+
skills_keywords = [skill.strip() for skill in skills_keywords_input.split(',') if skill.strip()]
|
|
|
|
|
206 |
|
207 |
if skills_keywords:
|
208 |
# Calculate the similarity score between each skill keyword and the resume text
|
|
|
210 |
for resume_text in resumes_texts:
|
211 |
resume_text_similarity_scores = []
|
212 |
for skill in skills_keywords:
|
213 |
+
similarity_score = calculate_similarity(model_resumes, resume_text, skill)
|
|
|
214 |
resume_text_similarity_scores.append(similarity_score)
|
215 |
skills_similarity_scores.append(resume_text_similarity_scores)
|
216 |
|
217 |
# Create a DataFrame with the similarity scores and set the index to the names of the PDFs
|
218 |
+
skills_similarity_df = pd.DataFrame(skills_similarity_scores, columns=skills_keywords, index=[resume_file.name for resume_file in resumes_files])
|
|
|
219 |
|
220 |
# Plot the heatmap
|
221 |
fig, ax = plt.subplots(figsize=(12, 8))
|
222 |
+
sns.heatmap(skills_similarity_df, cmap='YlGnBu', annot=True, fmt=".2f", ax=ax)
|
|
|
|
|
223 |
ax.set_title('Heatmap for Skills Similarity')
|
224 |
ax.set_xlabel('Skills')
|
225 |
ax.set_ylabel('Resumes')
|
|
|
235 |
else:
|
236 |
st.warning("Please upload the Job Description PDF to proceed.")
|
237 |
else:
|
238 |
+
st.warning("Please upload Resumes PDF to proceed.")
|