rohitashva commited on
Commit
5aa5050
Β·
verified Β·
1 Parent(s): 49c46a1

Upload 4 files

Browse files
Files changed (4) hide show
  1. bert.py +238 -0
  2. doc2vec.py +277 -0
  3. main.py +266 -0
  4. requirements.txt +11 -0
bert.py ADDED
@@ -0,0 +1,238 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Import necessary libraries
2
+ import streamlit as st
3
+ import nltk
4
+ from gensim.models.doc2vec import Doc2Vec, TaggedDocument
5
+ from nltk.tokenize import word_tokenize
6
+ import PyPDF2
7
+ import pandas as pd
8
+ import re
9
+ import matplotlib.pyplot as plt
10
+ import seaborn as sns
11
+ import spacy
12
+
13
+ # Download necessary NLTK data
14
+ nltk.download('punkt')
15
+
16
+ # Define regular expressions for pattern matching
17
+ float_regex = re.compile(r'^\d{1,2}(\.\d{1,2})?$')
18
+ email_pattern = r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b'
19
+ float_digit_regex = re.compile(r'^\d{10}$')
20
+ email_with_phone_regex = re.compile(r'(\d{10}).|.(\d{10})')
21
+
22
+ # Function to extract text from a PDF file
23
+ def extract_text_from_pdf(pdf_file):
24
+ pdf_reader = PyPDF2.PdfReader(pdf_file)
25
+ text = ""
26
+ for page_num in range(len(pdf_reader.pages)):
27
+ text += pdf_reader.pages[page_num].extract_text()
28
+ return text
29
+
30
+ # Function to tokenize text using the NLP model
31
+ def tokenize_text(text, nlp_model):
32
+ doc = nlp_model(text, disable=["tagger", "parser"])
33
+ tokens = [(token.text.lower(), token.label_) for token in doc.ents]
34
+ return tokens
35
+
36
+ # Function to extract CGPA from a resume
37
+ def extract_cgpa(resume_text):
38
+ cgpa_pattern = r'\b(?:CGPA|GPA|C\.G\.PA|Cumulative GPA)\s*:?[\s-]([0-9]+(?:\.[0-9]+)?)\b|\b([0-9]+(?:\.[0-9]+)?)\s(?:CGPA|GPA)\b'
39
+ match = re.search(cgpa_pattern, resume_text, re.IGNORECASE)
40
+ if match:
41
+ cgpa = match.group(1) if match.group(1) else match.group(2)
42
+ return float(cgpa)
43
+ else:
44
+ return None
45
+
46
+ # Function to extract skills from a resume
47
+ def extract_skills(text, skills_keywords):
48
+ skills = [skill.lower() for skill in skills_keywords if re.search(r'\b' + re.escape(skill.lower()) + r'\b', text.lower())]
49
+ return skills
50
+
51
+ # Function to preprocess text
52
+ def preprocess_text(text):
53
+ return word_tokenize(text.lower())
54
+
55
+ # Function to train a Doc2Vec model
56
+ def train_doc2vec_model(documents):
57
+ model = Doc2Vec(vector_size=20, min_count=2, epochs=50)
58
+ model.build_vocab(documents)
59
+ model.train(documents, total_examples=model.corpus_count, epochs=model.epochs)
60
+ return model
61
+
62
+ # Function to calculate similarity between two texts
63
+ def calculate_similarity(model, text1, text2):
64
+ vector1 = model.infer_vector(preprocess_text(text1))
65
+ vector2 = model.infer_vector(preprocess_text(text2))
66
+ return model.dv.cosine_similarities(vector1, [vector2])[0]
67
+
68
+ # Function to calculate accuracy
69
+ def accuracy_calculation(true_positives, false_positives, false_negatives):
70
+ total = true_positives + false_positives + false_negatives
71
+ accuracy = true_positives / total if total != 0 else 0
72
+ return accuracy
73
+
74
+ # Streamlit Frontend
75
+ st.markdown("# Resume Matching Tool πŸ“ƒπŸ“ƒ")
76
+ st.markdown("An application to match resumes with a job description.")
77
+
78
+ # Sidebar - File Upload for Resumes
79
+ st.sidebar.markdown("## Upload Resumes PDF")
80
+ resumes_files = st.sidebar.file_uploader("Upload Resumes PDF", type=["pdf"], accept_multiple_files=True)
81
+
82
+ if resumes_files:
83
+ # Sidebar - File Upload for Job Descriptions
84
+ st.sidebar.markdown("## Upload Job Description PDF")
85
+ job_descriptions_file = st.sidebar.file_uploader("Upload Job Description PDF", type=["pdf"])
86
+
87
+ if job_descriptions_file:
88
+ # Load the pre-trained NLP model
89
+ nlp_model_path = "en_Resume_Matching_Keywords"
90
+ nlp = spacy.load(nlp_model_path)
91
+
92
+ # Backend Processing
93
+ job_description_text = extract_text_from_pdf(job_descriptions_file)
94
+ resumes_texts = [extract_text_from_pdf(resume_file) for resume_file in resumes_files]
95
+ job_description_text = extract_text_from_pdf(job_descriptions_file)
96
+ job_description_tokens = tokenize_text(job_description_text, nlp)
97
+
98
+ # Initialize counters
99
+ overall_skill_matches = 0
100
+ overall_qualification_matches = 0
101
+
102
+ # Create a list to store individual results
103
+ results_list = []
104
+ job_skills = set()
105
+ job_qualifications = set()
106
+
107
+ for job_token, job_label in job_description_tokens:
108
+ if job_label == 'QUALIFICATION':
109
+ job_qualifications.add(job_token.replace('\n', ' '))
110
+ elif job_label == 'SKILLS':
111
+ job_skills.add(job_token.replace('\n', ' '))
112
+
113
+ job_skills_number = len(job_skills)
114
+ job_qualifications_number = len(job_qualifications)
115
+
116
+ # Lists to store counts of matched skills for all resumes
117
+ skills_counts_all_resumes = []
118
+
119
+ # Iterate over all uploaded resumes
120
+ for uploaded_resume in resumes_files:
121
+ resume_text = extract_text_from_pdf(uploaded_resume)
122
+ resume_tokens = tokenize_text(resume_text, nlp)
123
+
124
+ # Initialize counters for individual resume
125
+ skillMatch = 0
126
+ qualificationMatch = 0
127
+ cgpa = ""
128
+
129
+ # Lists to store matched skills and qualifications for each resume
130
+ matched_skills = set()
131
+ matched_qualifications = set()
132
+ email = set()
133
+ phone = set()
134
+ name = set()
135
+
136
+ # Compare the tokens in the resume with the job description
137
+ for resume_token, resume_label in resume_tokens:
138
+ for job_token, job_label in job_description_tokens:
139
+ if resume_token.lower().replace('\n', ' ') == job_token.lower().replace('\n', ' '):
140
+ if resume_label == 'SKILLS':
141
+ matched_skills.add(resume_token.replace('\n', ' '))
142
+ elif resume_label == 'QUALIFICATION':
143
+ matched_qualifications.add(resume_token.replace('\n', ' '))
144
+ elif resume_label == 'PHONE' and bool(float_digit_regex.match(resume_token)):
145
+ phone.add(resume_token)
146
+ elif resume_label == 'QUALIFICATION':
147
+ matched_qualifications.add(resume_token.replace('\n', ' '))
148
+
149
+ skillMatch = len(matched_skills)
150
+ qualificationMatch = len(matched_qualifications)
151
+
152
+ # Convert the list of emails to a set
153
+ email_set = set(re.findall(email_pattern, resume_text.replace('\n', ' ')))
154
+ email.update(email_set)
155
+
156
+ numberphone=""
157
+ for email_str in email:
158
+ numberphone = email_with_phone_regex.search(email_str)
159
+ if numberphone:
160
+ email.remove(email_str)
161
+ val=numberphone.group(1) or numberphone.group(2)
162
+ phone.add(val)
163
+ email.add(email_str.strip(val))
164
+
165
+ # Increment overall counters based on matches
166
+ overall_skill_matches += skillMatch
167
+ overall_qualification_matches += qualificationMatch
168
+
169
+ # Add count of matched skills for this resume to the list
170
+ skills_counts_all_resumes.append([resume_text.count(skill.lower()) for skill in job_skills])
171
+
172
+ # Create a dictionary for the current resume and append to the results list
173
+ result_dict = {
174
+ "Resume": uploaded_resume.name,
175
+ "Similarity Score": (skillMatch/job_skills_number)*100,
176
+ "Skill Matches": skillMatch,
177
+ "Matched Skills": matched_skills,
178
+ "CGPA": extract_cgpa(resume_text),
179
+ "Email": email,
180
+ "Phone": phone,
181
+ "Qualification Matches": qualificationMatch,
182
+ "Matched Qualifications": matched_qualifications
183
+ }
184
+
185
+ results_list.append(result_dict)
186
+
187
+ # Display overall matches
188
+ st.subheader("Overall Matches")
189
+ st.write(f"Total Skill Matches: {overall_skill_matches}")
190
+ st.write(f"Total Qualification Matches: {overall_qualification_matches}")
191
+ st.write(f"Job Qualifications: {job_qualifications}")
192
+ st.write(f"Job Skills: {job_skills}")
193
+
194
+ # Display individual results in a table
195
+ results_df = pd.DataFrame(results_list)
196
+ st.subheader("Individual Results")
197
+ st.dataframe(results_df)
198
+ tagged_resumes = [TaggedDocument(words=preprocess_text(text), tags=[str(i)]) for i, text in enumerate(resumes_texts)]
199
+ model_resumes = train_doc2vec_model(tagged_resumes)
200
+
201
+ st.subheader("\nHeatmap:")
202
+
203
+ # Get skills keywords from user input
204
+ skills_keywords_input = st.text_input("Enter skills keywords separated by commas (e.g., python, java, machine learning):")
205
+ skills_keywords = [skill.strip() for skill in skills_keywords_input.split(',') if skill.strip()]
206
+
207
+ if skills_keywords:
208
+ # Calculate the similarity score between each skill keyword and the resume text
209
+ skills_similarity_scores = []
210
+ for resume_text in resumes_texts:
211
+ resume_text_similarity_scores = []
212
+ for skill in skills_keywords:
213
+ similarity_score = calculate_similarity(model_resumes, resume_text, skill)
214
+ resume_text_similarity_scores.append(similarity_score)
215
+ skills_similarity_scores.append(resume_text_similarity_scores)
216
+
217
+ # Create a DataFrame with the similarity scores and set the index to the names of the PDFs
218
+ skills_similarity_df = pd.DataFrame(skills_similarity_scores, columns=skills_keywords, index=[resume_file.name for resume_file in resumes_files])
219
+
220
+ # Plot the heatmap
221
+ fig, ax = plt.subplots(figsize=(12, 8))
222
+ sns.heatmap(skills_similarity_df, cmap='YlGnBu', annot=True, fmt=".2f", ax=ax)
223
+ ax.set_title('Heatmap for Skills Similarity')
224
+ ax.set_xlabel('Skills')
225
+ ax.set_ylabel('Resumes')
226
+
227
+ # Rotate the y-axis labels for better readability
228
+ plt.yticks(rotation=0)
229
+
230
+ # Display the Matplotlib figure using st.pyplot()
231
+ st.pyplot(fig)
232
+ else:
233
+ st.write("Please enter at least one skill keyword.")
234
+
235
+ else:
236
+ st.warning("Please upload the Job Description PDF to proceed.")
237
+ else:
238
+ st.warning("Please upload Resumes PDF to proceed.")
doc2vec.py ADDED
@@ -0,0 +1,277 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Importing necessary libraries
2
+ from collections import Counter
3
+ import streamlit as st
4
+ import nltk
5
+ from gensim.models.doc2vec import Doc2Vec, TaggedDocument
6
+ from nltk.tokenize import word_tokenize
7
+ import PyPDF2
8
+ import pandas as pd
9
+ import re
10
+ import matplotlib.pyplot as plt
11
+ import seaborn as sns
12
+
13
+ # Downloading the 'punkt' tokenizer from NLTK
14
+ nltk.download('punkt')
15
+
16
+ # Function to extract text from a PDF file
17
+ def extract_text_from_pdf(pdf_file):
18
+ pdf_reader = PyPDF2.PdfReader(pdf_file)
19
+ text = ""
20
+ for page_num in range(len(pdf_reader.pages)):
21
+ text += pdf_reader.pages[page_num].extract_text()
22
+ return text
23
+
24
+ # Function to extract skills from a text using a list of skill keywords
25
+ def extract_skills(text, skills_keywords):
26
+ skills = [skill.lower()
27
+ for skill in skills_keywords if re.search(r'\b' + re.escape(skill.lower()) + r'\b', text.lower())]
28
+ return skills
29
+
30
+ # Function to preprocess text by tokenizing and converting to lowercase
31
+ def preprocess_text(text):
32
+ return word_tokenize(text.lower())
33
+
34
+ # Function to extract mobile numbers from a text
35
+ def extract_mobile_numbers(text):
36
+ mobile_pattern = r'\b\d{10}\b|\b\d{3}[-.\s]?\d{3}[-.\s]?\d{4}\b'
37
+ return re.findall(mobile_pattern, text)
38
+
39
+ # Function to extract emails from a text
40
+ def extract_emails(text):
41
+ email_pattern = r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b'
42
+ return re.findall(email_pattern, text)
43
+
44
+ # Function to train a Doc2Vec model on a list of tagged documents
45
+ def train_doc2vec_model(documents):
46
+ model = Doc2Vec(vector_size=20, min_count=2, epochs=50)
47
+ model.build_vocab(documents)
48
+ model.train(documents, total_examples=model.corpus_count,
49
+ epochs=model.epochs)
50
+ return model
51
+
52
+ # Function to calculate the cosine similarity between two texts using a trained Doc2Vec model
53
+ def calculate_similarity(model, text1, text2):
54
+ vector1 = model.infer_vector(preprocess_text(text1))
55
+ vector2 = model.infer_vector(preprocess_text(text2))
56
+ return model.dv.cosine_similarities(vector1, [vector2])[0]
57
+
58
+ # Function to calculate accuracy based on true positives, false positives, and false negatives
59
+ def accuracy_calculation(true_positives, false_positives, false_negatives):
60
+ total = true_positives + false_positives + false_negatives
61
+ accuracy = true_positives / total if total != 0 else 0
62
+ return accuracy
63
+
64
+ # Function to extract CGPA from a text
65
+ def extract_cgpa(resume_text):
66
+ # Define a regular expression pattern for CGPA extraction
67
+ cgpa_pattern = r'\b(?:CGPA|GPA|C.G.PA|Cumulative GPA)\s*:?[\s-]* ([0-9]+(?:\.[0-9]+)?)\b|\b([0-9]+(?:\.[0-9]+)?)\s*(?:CGPA|GPA)\b'
68
+
69
+ # Search for CGPA pattern in the text
70
+ match = re.search(cgpa_pattern, resume_text, re.IGNORECASE)
71
+
72
+ # Check if a match is found
73
+ if match:
74
+ cgpa = match.group(1)
75
+ if cgpa is not None:
76
+ return float(cgpa)
77
+ else:
78
+ return float(match.group(2))
79
+ else:
80
+ return None
81
+
82
+ # Regular expressions for email and phone number patterns
83
+ email_pattern = r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b'
84
+ phone_pattern = r'\b\d{10}\b|\b\d{3}[-.\s]?\d{3}[-.\s]?\d{4}\b'
85
+
86
+ # Streamlit Frontend
87
+ st.markdown("# Resume Matching Tool πŸ“ƒπŸ“ƒ")
88
+ st.markdown("An application to match resumes with a job description.")
89
+
90
+ # Sidebar - File Upload for Resumes
91
+ st.sidebar.markdown("## Upload Resumes PDF")
92
+ resumes_files = st.sidebar.file_uploader(
93
+ "Upload Resumes PDF", type=["pdf"], accept_multiple_files=True)
94
+
95
+ if resumes_files:
96
+ # Sidebar - File Upload for Job Descriptions
97
+ st.sidebar.markdown("## Upload Job Description PDF")
98
+ job_descriptions_file = st.sidebar.file_uploader(
99
+ "Upload Job Description PDF", type=["pdf"])
100
+
101
+ if job_descriptions_file:
102
+ # Sidebar - Sorting Options
103
+ sort_options = ['Weighted Score', 'Similarity Score']
104
+ selected_sort_option = st.sidebar.selectbox(
105
+ "Sort results by", sort_options)
106
+
107
+ # Backend Processing
108
+ job_description_text = extract_text_from_pdf(job_descriptions_file)
109
+ resumes_texts = [extract_text_from_pdf(
110
+ resume_file) for resume_file in resumes_files]
111
+
112
+ tagged_resumes = [TaggedDocument(words=preprocess_text(
113
+ text), tags=[str(i)]) for i, text in enumerate(resumes_texts)]
114
+ model_resumes = train_doc2vec_model(tagged_resumes)
115
+
116
+ true_positives_mobile = 0
117
+ false_positives_mobile = 0
118
+ false_negatives_mobile = 0
119
+
120
+ true_positives_email = 0
121
+ false_positives_email = 0
122
+ false_negatives_email = 0
123
+
124
+ results_data = {'Resume': [], 'Similarity Score': [],
125
+ 'Weighted Score': [], 'Email': [], 'Contact': [], 'CGPA': []}
126
+
127
+ for i, resume_text in enumerate(resumes_texts):
128
+ extracted_mobile_numbers = set(extract_mobile_numbers(resume_text))
129
+ extracted_emails = set(extract_emails(resume_text))
130
+ extracted_cgpa = extract_cgpa(resume_text)
131
+
132
+ ground_truth_mobile_numbers = {'1234567890', '9876543210'}
133
+ ground_truth_emails = {
134
135
+
136
+ true_positives_mobile += len(
137
+ extracted_mobile_numbers.intersection(ground_truth_mobile_numbers))
138
+ false_positives_mobile += len(
139
+ extracted_mobile_numbers.difference(ground_truth_mobile_numbers))
140
+ false_negatives_mobile += len(
141
+ ground_truth_mobile_numbers.difference(extracted_mobile_numbers))
142
+
143
+ true_positives_email += len(
144
+ extracted_emails.intersection(ground_truth_emails))
145
+ false_positives_email += len(
146
+ extracted_emails.difference(ground_truth_emails))
147
+ false_negatives_email += len(
148
+ ground_truth_emails.difference(extracted_emails))
149
+
150
+ similarity_score = calculate_similarity(
151
+ model_resumes, resume_text, job_description_text)
152
+
153
+ other_criteria_score = 0
154
+
155
+ weighted_score = (0.6 * similarity_score) + \
156
+ (0.4 * other_criteria_score)
157
+
158
+ results_data['Resume'].append(resumes_files[i].name)
159
+ results_data['Similarity Score'].append(similarity_score * 100)
160
+ results_data['Weighted Score'].append(weighted_score)
161
+
162
+ emails = ', '.join(re.findall(email_pattern, resume_text))
163
+ contacts = ', '.join(re.findall(phone_pattern, resume_text))
164
+ results_data['Email'].append(emails)
165
+ results_data['Contact'].append(contacts)
166
+ results_data['CGPA'].append(extracted_cgpa)
167
+
168
+ results_df = pd.DataFrame(results_data)
169
+
170
+ if selected_sort_option == 'Similarity Score':
171
+ results_df = results_df.sort_values(
172
+ by='Similarity Score', ascending=False)
173
+ else:
174
+ results_df = results_df.sort_values(
175
+ by='Weighted Score', ascending=False)
176
+
177
+ st.subheader(f"Results Table (Sorted by {selected_sort_option}):")
178
+
179
+ # Define a custom function to highlight maximum values in the specified columns
180
+ def highlight_max(data, color='grey'):
181
+ is_max = data == data.max()
182
+ return [f'background-color: {color}' if val else '' for val in is_max]
183
+
184
+ # Apply the custom highlighting function to the DataFrame
185
+ st.dataframe(results_df.style.apply(highlight_max, subset=[
186
+ 'Similarity Score', 'Weighted Score', 'CGPA']))
187
+
188
+
189
+ highest_score_index = results_df['Similarity Score'].idxmax()
190
+ highest_score_resume_name = resumes_files[highest_score_index].name
191
+
192
+ st.subheader("\nDetails of Highest Similarity Score Resume:")
193
+ st.write(f"Resume Name: {highest_score_resume_name}")
194
+ st.write(
195
+ f"Similarity Score: {results_df.loc[highest_score_index, 'Similarity Score']:.2f}")
196
+
197
+ if 'Weighted Score' in results_df.columns:
198
+ weighted_score_value = results_df.loc[highest_score_index,
199
+ 'Weighted Score']
200
+ st.write(f"Weighted Score: {weighted_score_value:.2f}" if pd.notnull(
201
+ weighted_score_value) else "Weighted Score: Not Mentioned")
202
+ else:
203
+ st.write("Weighted Score: Not Mentioned")
204
+
205
+ if 'Email' in results_df.columns:
206
+ email_value = results_df.loc[highest_score_index, 'Email']
207
+ st.write(f"Email: {email_value}" if pd.notnull(
208
+ email_value) else "Email: Not Mentioned")
209
+ else:
210
+ st.write("Email: Not Mentioned")
211
+
212
+ if 'Contact' in results_df.columns:
213
+ contact_value = results_df.loc[highest_score_index, 'Contact']
214
+ st.write(f"Contact: {contact_value}" if pd.notnull(
215
+ contact_value) else "Contact: Not Mentioned")
216
+ else:
217
+ st.write("Contact: Not Mentioned")
218
+
219
+ if 'CGPA' in results_df.columns:
220
+ cgpa_value = results_df.loc[highest_score_index, 'CGPA']
221
+ st.write(f"CGPA: {cgpa_value}" if pd.notnull(
222
+ cgpa_value) else "CGPA: Not Mentioned")
223
+ else:
224
+ st.write("CGPA: Not Mentioned")
225
+
226
+ mobile_accuracy = accuracy_calculation(
227
+ true_positives_mobile, false_positives_mobile, false_negatives_mobile)
228
+ email_accuracy = accuracy_calculation(
229
+ true_positives_email, false_positives_email, false_negatives_email)
230
+
231
+ st.subheader("\nHeatmap:")
232
+ # st.write(f"Mobile Number Accuracy: {mobile_accuracy:.2%}")
233
+ # st.write(f"Email Accuracy: {email_accuracy:.2%}")
234
+
235
+ # Get skills keywords from user input
236
+ skills_keywords_input = st.text_input(
237
+ "Enter skills keywords separated by commas (e.g., python, java, machine learning):")
238
+ skills_keywords = [skill.strip()
239
+ for skill in skills_keywords_input.split(',') if skill.strip()]
240
+
241
+ if skills_keywords:
242
+ # Calculate the similarity score between each skill keyword and the resume text
243
+ skills_similarity_scores = []
244
+ for resume_text in resumes_texts:
245
+ resume_text_similarity_scores = []
246
+ for skill in skills_keywords:
247
+ similarity_score = calculate_similarity(
248
+ model_resumes, resume_text, skill)
249
+ resume_text_similarity_scores.append(similarity_score)
250
+ skills_similarity_scores.append(resume_text_similarity_scores)
251
+
252
+ # Create a DataFrame with the similarity scores and set the index to the names of the PDFs
253
+ skills_similarity_df = pd.DataFrame(
254
+ skills_similarity_scores, columns=skills_keywords, index=[resume_file.name for resume_file in resumes_files])
255
+
256
+ # Plot the heatmap
257
+ fig, ax = plt.subplots(figsize=(12, 8))
258
+
259
+ sns.heatmap(skills_similarity_df,
260
+ cmap='YlGnBu', annot=True, fmt=".2f", ax=ax)
261
+ ax.set_title('Heatmap for Skills Similarity')
262
+ ax.set_xlabel('Skills')
263
+ ax.set_ylabel('Resumes')
264
+
265
+ # Rotate the y-axis labels for better readability
266
+ plt.yticks(rotation=0)
267
+
268
+ # Display the Matplotlib figure using st.pyplot()
269
+ st.pyplot(fig)
270
+ else:
271
+ st.write("Please enter at least one skill keyword.")
272
+
273
+
274
+ else:
275
+ st.warning("Please upload the Job Description PDF to proceed.")
276
+ else:
277
+ st.warning("Please upload Resumes PDF to proceed.")
main.py ADDED
@@ -0,0 +1,266 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from collections import Counter
2
+ import streamlit as st
3
+ import nltk
4
+ from gensim.models.doc2vec import Doc2Vec, TaggedDocument
5
+ from nltk.tokenize import word_tokenize
6
+ import os
7
+ import PyPDF2
8
+ import pandas as pd
9
+ import re
10
+ import matplotlib.pyplot as plt
11
+ import seaborn as sns
12
+ import spacy
13
+ from PyPDF2 import PdfReader
14
+ from io import BytesIO
15
+ import re
16
+ import pandas as pd
17
+ import matplotlib.pyplot as plt
18
+ import seaborn as sns
19
+
20
+ nltk.download('punkt')
21
+
22
+
23
+ nlp_model_path = "en_Resume_Matching_Keywords"
24
+ nlp = spacy.load(nlp_model_path)
25
+
26
+ float_regex = re.compile(r'^\d{1,2}(\.\d{1,2})?$')
27
+ email_pattern = r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b'
28
+ float_digit_regex = re.compile(r'^\d+$')
29
+ email_with_phone_regex = email_with_phone_regex = re.compile(
30
+ r'(\d{10}).|.(\d{10})')
31
+
32
+
33
+ def extract_text_from_pdf(pdf_file):
34
+ pdf_reader = PyPDF2.PdfReader(pdf_file)
35
+ text = ""
36
+ for page_num in range(len(pdf_reader.pages)):
37
+ text += pdf_reader.pages[page_num].extract_text()
38
+ return text
39
+
40
+
41
+ def tokenize_text(text, nlp_model):
42
+ doc = nlp_model(text, disable=["tagger", "parser"])
43
+ tokens = [(token.text.lower(), token.label_) for token in doc.ents]
44
+ return tokens
45
+
46
+
47
+ def extract_cgpa(resume_text):
48
+ # Define a regular expression pattern for CGPA extraction
49
+ cgpa_pattern = r'\b(?:CGPA|GPA|C\.G\.PA|Cumulative GPA)\s*:?[\s-]([0-9]+(?:\.[0-9]+)?)\b|\b([0-9]+(?:\.[0-9]+)?)\s(?:CGPA|GPA)\b'
50
+
51
+ # Search for CGPA pattern in the text
52
+ match = re.search(cgpa_pattern, resume_text, re.IGNORECASE)
53
+
54
+ # Check if a match is found
55
+ if match:
56
+ # Extract CGPA value
57
+ cgpa = match.group(1) if match.group(1) else match.group(2)
58
+ return float(cgpa)
59
+ else:
60
+ return None
61
+
62
+
63
+ def extract_skills(text, skills_keywords):
64
+ skills = [skill.lower()
65
+ for skill in skills_keywords if re.search(r'\b' + re.escape(skill.lower()) + r'\b', text.lower())]
66
+ return skills
67
+
68
+
69
+ def preprocess_text(text):
70
+ return word_tokenize(text.lower())
71
+
72
+
73
+
74
+
75
+
76
+ def train_doc2vec_model(documents):
77
+ model = Doc2Vec(vector_size=20, min_count=2, epochs=50)
78
+ model.build_vocab(documents)
79
+ model.train(documents, total_examples=model.corpus_count,
80
+ epochs=model.epochs)
81
+ return model
82
+
83
+
84
+ def calculate_similarity(model, text1, text2):
85
+ vector1 = model.infer_vector(preprocess_text(text1))
86
+ vector2 = model.infer_vector(preprocess_text(text2))
87
+ return model.dv.cosine_similarities(vector1, [vector2])[0]
88
+
89
+
90
+ def accuracy_calculation(true_positives, false_positives, false_negatives):
91
+ total = true_positives + false_positives + false_negatives
92
+ accuracy = true_positives / total if total != 0 else 0
93
+ return accuracy
94
+
95
+
96
+
97
+
98
+
99
+
100
+ # Streamlit Frontend
101
+ st.markdown("# Resume Matching Tool πŸ“ƒπŸ“ƒ")
102
+ st.markdown("An application to match resumes with a job description.")
103
+
104
+ # Sidebar - File Upload for Resumes
105
+ st.sidebar.markdown("## Upload Resumes PDF")
106
+ resumes_files = st.sidebar.file_uploader(
107
+ "Upload Resumes PDF", type=["pdf"], accept_multiple_files=True)
108
+
109
+ if resumes_files:
110
+ # Sidebar - File Upload for Job Descriptions
111
+ st.sidebar.markdown("## Upload Job Description PDF")
112
+ job_descriptions_file = st.sidebar.file_uploader(
113
+ "Upload Job Description PDF", type=["pdf"])
114
+
115
+ if job_descriptions_file:
116
+
117
+ # Backend Processing
118
+ job_description_text = extract_text_from_pdf(job_descriptions_file)
119
+ resumes_texts = [extract_text_from_pdf(
120
+ resume_file) for resume_file in resumes_files]
121
+ job_description_text = extract_text_from_pdf(job_descriptions_file)
122
+ job_description_tokens = tokenize_text(job_description_text, nlp)
123
+
124
+ # st.subheader("Matching Keywords")
125
+
126
+ # Initialize counters
127
+ overall_skill_matches = 0
128
+ overall_qualification_matches = 0
129
+
130
+ # Create a list to store individual results
131
+ results_list = []
132
+ job_skills = set()
133
+ job_qualifications = set()
134
+
135
+ for job_token, job_label in job_description_tokens:
136
+ if job_label == 'QUALIFICATION':
137
+ job_qualifications.add(job_token)
138
+ elif job_label == 'SKILLS':
139
+ job_skills.add(job_token)
140
+
141
+ job_skills_number = len(job_skills)
142
+ job_qualifications_number = len(job_qualifications)
143
+
144
+ # Lists to store counts of matched skills for all resumes
145
+ skills_counts_all_resumes = []
146
+
147
+ # Iterate over all uploaded resumes
148
+ for uploaded_resume in resumes_files:
149
+ resume_text = extract_text_from_pdf(uploaded_resume)
150
+ resume_tokens = tokenize_text(resume_text, nlp)
151
+
152
+ # Initialize counters for individual resume
153
+ skillMatch = 0
154
+ qualificationMatch = 0
155
+ cgpa = ""
156
+
157
+ # Lists to store matched skills and qualifications for each resume
158
+ matched_skills = set()
159
+ matched_qualifications = set()
160
+ email = set()
161
+ phone = set()
162
+ name = set()
163
+
164
+ # Compare the tokens in the resume with the job description
165
+ for resume_token, resume_label in resume_tokens:
166
+ for job_token, job_label in job_description_tokens:
167
+ if resume_token.lower() == job_token.lower():
168
+ if resume_label == 'SKILLS':
169
+ matched_skills.add(resume_token)
170
+ elif resume_label == 'QUALIFICATION':
171
+ matched_qualifications.add(resume_token)
172
+ elif resume_label == 'CGPA' and bool(float_regex.match(resume_token)):
173
+ cgpa = resume_token
174
+ elif resume_label == 'PHONE' and bool(float_digit_regex.match(resume_token)):
175
+ phone.add(resume_token)
176
+ elif resume_label == 'QUALIFICATION':
177
+ matched_qualifications.add(resume_token)
178
+
179
+ skillMatch = len(matched_skills)
180
+ qualificationMatch = len(matched_qualifications)
181
+
182
+ # Increment overall counters based on matches
183
+ overall_skill_matches += skillMatch
184
+ overall_qualification_matches += qualificationMatch
185
+
186
+ # Add count of matched skills for this resume to the list
187
+ skills_counts_all_resumes.append(
188
+ [resume_text.count(skill.lower()) for skill in job_skills])
189
+
190
+ # Create a dictionary for the current resume and append to the results list
191
+ result_dict = {
192
+ "Resume": uploaded_resume.name,
193
+ "Similarity Score": (skillMatch/job_skills_number)*100,
194
+ "Skill Matches": skillMatch,
195
+ "Matched Skills": matched_skills,
196
+ "CGPA": extract_cgpa(resume_text),
197
+ "Email": email,
198
+ "Phone": phone,
199
+ "Qualification Matches": qualificationMatch,
200
+ "Matched Qualifications": matched_qualifications
201
+ }
202
+
203
+ results_list.append(result_dict)
204
+
205
+ # Display overall matches
206
+ st.subheader("Overall Matches")
207
+ st.write(f"Total Skill Matches: {overall_skill_matches}")
208
+ st.write(
209
+ f"Total Qualification Matches: {overall_qualification_matches}")
210
+ st.write(f"Job Qualifications: {job_qualifications}")
211
+ st.write(f"Job Skills: {job_skills}")
212
+
213
+ # Display individual results in a table
214
+ results_df = pd.DataFrame(results_list)
215
+ st.subheader("Individual Results")
216
+ st.dataframe(results_df)
217
+ tagged_resumes = [TaggedDocument(words=preprocess_text(
218
+ text), tags=[str(i)]) for i, text in enumerate(resumes_texts)]
219
+ model_resumes = train_doc2vec_model(tagged_resumes)
220
+
221
+
222
+
223
+ st.subheader("\nHeatmap:")
224
+
225
+ # Get skills keywords from user input
226
+ skills_keywords_input = st.text_input(
227
+ "Enter skills keywords separated by commas (e.g., python, java, machine learning):")
228
+ skills_keywords = [skill.strip()
229
+ for skill in skills_keywords_input.split(',') if skill.strip()]
230
+
231
+ if skills_keywords:
232
+ # Calculate the similarity score between each skill keyword and the resume text
233
+ skills_similarity_scores = []
234
+ for resume_text in resumes_texts:
235
+ resume_text_similarity_scores = []
236
+ for skill in skills_keywords:
237
+ similarity_score = calculate_similarity(
238
+ model_resumes, resume_text, skill)
239
+ resume_text_similarity_scores.append(similarity_score)
240
+ skills_similarity_scores.append(resume_text_similarity_scores)
241
+
242
+ # Create a DataFrame with the similarity scores and set the index to the names of the PDFs
243
+ skills_similarity_df = pd.DataFrame(
244
+ skills_similarity_scores, columns=skills_keywords, index=[resume_file.name for resume_file in resumes_files])
245
+
246
+ # Plot the heatmap
247
+ fig, ax = plt.subplots(figsize=(12, 8))
248
+
249
+ sns.heatmap(skills_similarity_df,
250
+ cmap='YlGnBu', annot=True, fmt=".2f", ax=ax)
251
+ ax.set_title('Heatmap for Skills Similarity')
252
+ ax.set_xlabel('Skills')
253
+ ax.set_ylabel('Resumes')
254
+
255
+ # Rotate the y-axis labels for better readability
256
+ plt.yticks(rotation=0)
257
+
258
+ # Display the Matplotlib figure using st.pyplot()
259
+ st.pyplot(fig)
260
+ else:
261
+ st.write("Please enter at least one skill keyword.")
262
+
263
+ else:
264
+ st.warning("Please upload the Job Description PDF to proceed.")
265
+ else:
266
+ st.warning("Please upload Resumes PDF to proceed.")
requirements.txt ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ gensim==4.3.2
2
+ matplotlib==3.8.2
3
+ nltk==3.8.1
4
+ pandas==1.3.5
5
+ PyPDF2==3.0.1
6
+ seaborn==0.13.2
7
+ streamlit==1.31.0
8
+ torch==2.2.0
9
+ transformers==4.37.2
10
+ spacy
11
+ https://huggingface.co/Priyanka-Balivada/en_Resume_Matching_Keywords/resolve/main/en_Resume_Matching_Keywords-any-py3-none-any.whl