import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer import os # Set Hugging Face token # Replace this with your Hugging Face token or set it as an environment variable in Spaces settings. hf_token = os.getenv("HF_TOKEN") # Load the Llama model with authentication model_name = "meta-llama/Llama-3.2-3B-Instruct" tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=hf_token) model = AutoModelForCausalLM.from_pretrained(model_name, use_auth_token=hf_token) # Define chatbot function def chat_with_llama(user_input): inputs = tokenizer(user_input, return_tensors="pt") outputs = model.generate(inputs.input_ids, max_length=100, do_sample=True, temperature=0.7) response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response # Gradio interface interface = gr.Interface( fn=chat_with_llama, inputs=gr.Textbox(lines=2, placeholder="Ask me anything!"), outputs=gr.Textbox(), title="Llama 3.2 3B Chatbot", description="A simple chatbot powered by Llama 3.2 3B." ) # Launch the app interface.launch()