Spaces:
Runtime error
Runtime error
Upload 3 files
Browse files- networks/layers.py +49 -0
- requirements.txt +7 -0
- utils/utils.py +376 -0
networks/layers.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tensorflow as tf
|
2 |
+
from tensorflow.keras.layers import Layer, Dense
|
3 |
+
|
4 |
+
|
5 |
+
def sin_activation(x, omega=30):
|
6 |
+
return tf.math.sin(omega * x)
|
7 |
+
|
8 |
+
|
9 |
+
class AdaIN(Layer):
|
10 |
+
def __init__(self, **kwargs):
|
11 |
+
super(AdaIN, self).__init__(**kwargs)
|
12 |
+
|
13 |
+
def build(self, input_shapes):
|
14 |
+
x_shape = input_shapes[0]
|
15 |
+
w_shape = input_shapes[1]
|
16 |
+
|
17 |
+
self.w_channels = w_shape[-1]
|
18 |
+
self.x_channels = x_shape[-1]
|
19 |
+
|
20 |
+
self.dense_1 = Dense(self.x_channels)
|
21 |
+
self.dense_2 = Dense(self.x_channels)
|
22 |
+
|
23 |
+
def call(self, inputs):
|
24 |
+
x, w = inputs
|
25 |
+
ys = tf.reshape(self.dense_1(w), (-1, 1, 1, self.x_channels))
|
26 |
+
yb = tf.reshape(self.dense_2(w), (-1, 1, 1, self.x_channels))
|
27 |
+
return ys * x + yb
|
28 |
+
|
29 |
+
def get_config(self):
|
30 |
+
config = {
|
31 |
+
#'w_channels': self.w_channels,
|
32 |
+
#'x_channels': self.x_channels
|
33 |
+
}
|
34 |
+
base_config = super(AdaIN, self).get_config()
|
35 |
+
return dict(list(base_config.items()) + list(config.items()))
|
36 |
+
|
37 |
+
|
38 |
+
class AdaptiveAttention(Layer):
|
39 |
+
|
40 |
+
def __init__(self, **kwargs):
|
41 |
+
super(AdaptiveAttention, self).__init__(**kwargs)
|
42 |
+
|
43 |
+
def call(self, inputs):
|
44 |
+
m, a, i = inputs
|
45 |
+
return (1 - m) * a + m * i
|
46 |
+
|
47 |
+
def get_config(self):
|
48 |
+
base_config = super(AdaptiveAttention, self).get_config()
|
49 |
+
return base_config
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
tensorflow==2.10
|
2 |
+
tensorflow-addons==0.17.1
|
3 |
+
opencv-python-headless
|
4 |
+
scipy
|
5 |
+
pillow
|
6 |
+
scikit-image
|
7 |
+
huggingface_hub
|
utils/utils.py
ADDED
@@ -0,0 +1,376 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
from tensorflow.keras.models import model_from_json
|
3 |
+
from networks.layers import AdaIN, AdaptiveAttention
|
4 |
+
import tensorflow as tf
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import cv2
|
8 |
+
import math
|
9 |
+
from skimage import transform as trans
|
10 |
+
from scipy.signal import convolve2d
|
11 |
+
from skimage.color import rgb2yuv, yuv2rgb
|
12 |
+
|
13 |
+
from PIL import Image
|
14 |
+
|
15 |
+
|
16 |
+
def save_model_internal(model, path, name, num):
|
17 |
+
json_model = model.to_json()
|
18 |
+
with open(path + name + '.json', "w") as json_file:
|
19 |
+
json_file.write(json_model)
|
20 |
+
|
21 |
+
model.save_weights(path + name + '_' + str(num) + '.h5')
|
22 |
+
|
23 |
+
|
24 |
+
def load_model_internal(path, name, num):
|
25 |
+
with open(path + name + '.json', 'r') as json_file:
|
26 |
+
model_dict = json_file.read()
|
27 |
+
|
28 |
+
mod = model_from_json(model_dict, custom_objects={'AdaIN': AdaIN, 'AdaptiveAttention': AdaptiveAttention})
|
29 |
+
mod.load_weights(path + name + '_' + str(num) + '.h5')
|
30 |
+
|
31 |
+
return mod
|
32 |
+
|
33 |
+
|
34 |
+
def save_training_meta(state_dict, path, num):
|
35 |
+
with open(path + str(num) + '.json', 'w') as json_file:
|
36 |
+
json.dump(state_dict, json_file, indent=2)
|
37 |
+
|
38 |
+
|
39 |
+
def load_training_meta(path, num):
|
40 |
+
with open(path + str(num) + '.json', 'r') as json_file:
|
41 |
+
state_dict = json.load(json_file)
|
42 |
+
return state_dict
|
43 |
+
|
44 |
+
|
45 |
+
def log_info(sw, results_dict, iteration):
|
46 |
+
with sw.as_default():
|
47 |
+
for key in results_dict.keys():
|
48 |
+
tf.summary.scalar(key, results_dict[key], step=iteration)
|
49 |
+
|
50 |
+
|
51 |
+
src1 = np.array([[51.642, 50.115], [57.617, 49.990], [35.740, 69.007],
|
52 |
+
[51.157, 89.050], [57.025, 89.702]],
|
53 |
+
dtype=np.float32)
|
54 |
+
# <--left
|
55 |
+
src2 = np.array([[45.031, 50.118], [65.568, 50.872], [39.677, 68.111],
|
56 |
+
[45.177, 86.190], [64.246, 86.758]],
|
57 |
+
dtype=np.float32)
|
58 |
+
|
59 |
+
# ---frontal
|
60 |
+
src3 = np.array([[39.730, 51.138], [72.270, 51.138], [56.000, 68.493],
|
61 |
+
[42.463, 87.010], [69.537, 87.010]],
|
62 |
+
dtype=np.float32)
|
63 |
+
|
64 |
+
# -->right
|
65 |
+
src4 = np.array([[46.845, 50.872], [67.382, 50.118], [72.737, 68.111],
|
66 |
+
[48.167, 86.758], [67.236, 86.190]],
|
67 |
+
dtype=np.float32)
|
68 |
+
|
69 |
+
# -->right profile
|
70 |
+
src5 = np.array([[54.796, 49.990], [60.771, 50.115], [76.673, 69.007],
|
71 |
+
[55.388, 89.702], [61.257, 89.050]],
|
72 |
+
dtype=np.float32)
|
73 |
+
|
74 |
+
src = np.array([src1, src2, src3, src4, src5])
|
75 |
+
src_map = {112: src, 224: src * 2}
|
76 |
+
|
77 |
+
# Left eye, right eye, nose, left mouth, right mouth
|
78 |
+
arcface_src = np.array(
|
79 |
+
[[38.2946, 51.6963], [73.5318, 51.5014], [56.0252, 71.7366],
|
80 |
+
[41.5493, 92.3655], [70.7299, 92.2041]],
|
81 |
+
dtype=np.float32)
|
82 |
+
|
83 |
+
arcface_src = np.expand_dims(arcface_src, axis=0)
|
84 |
+
|
85 |
+
|
86 |
+
def extract_face(img, bb, absolute_center, mode='arcface', extention_rate=0.05, debug=False):
|
87 |
+
"""Extract face from image given a bounding box"""
|
88 |
+
# bbox
|
89 |
+
x1, y1, x2, y2 = bb + 60
|
90 |
+
adjusted_absolute_center = (absolute_center[0] + 60, absolute_center[1] + 60)
|
91 |
+
if debug:
|
92 |
+
print(bb + 60)
|
93 |
+
x1, y1, x2, y2 = bb
|
94 |
+
cv2.rectangle(img, (x1, y1), (x2, y2), (0, 255, 0), 3)
|
95 |
+
cv2.circle(img, absolute_center, 1, (255, 0, 255), 2)
|
96 |
+
Image.fromarray(img).show()
|
97 |
+
x1, y1, x2, y2 = bb + 60
|
98 |
+
# Pad image in case face is out of frame
|
99 |
+
padded_img = np.zeros(shape=(248, 248, 3), dtype=np.uint8)
|
100 |
+
padded_img[60:-60, 60:-60, :] = img
|
101 |
+
|
102 |
+
if debug:
|
103 |
+
cv2.rectangle(padded_img, (x1, y1), (x2, y2), (0, 255, 255), 3)
|
104 |
+
cv2.circle(padded_img, adjusted_absolute_center, 1, (255, 255, 255), 2)
|
105 |
+
Image.fromarray(padded_img).show()
|
106 |
+
|
107 |
+
y_len = abs(y1 - y2)
|
108 |
+
x_len = abs(x1 - x2)
|
109 |
+
|
110 |
+
new_len = (y_len + x_len) // 2
|
111 |
+
|
112 |
+
extension = int(new_len * extention_rate)
|
113 |
+
|
114 |
+
x_adjust = (x_len - new_len) // 2
|
115 |
+
y_adjust = (y_len - new_len) // 2
|
116 |
+
|
117 |
+
x_1_adjusted = x1 + x_adjust - extension
|
118 |
+
x_2_adjusted = x2 - x_adjust + extension
|
119 |
+
|
120 |
+
if mode == 'arcface':
|
121 |
+
y_1_adjusted = y1 - extension
|
122 |
+
y_2_adjusted = y2 - 2 * y_adjust + extension
|
123 |
+
else:
|
124 |
+
y_1_adjusted = y1 + 2 * y_adjust - extension
|
125 |
+
y_2_adjusted = y2 + extension
|
126 |
+
|
127 |
+
move_x = adjusted_absolute_center[0] - (x_1_adjusted + x_2_adjusted) // 2
|
128 |
+
move_y = adjusted_absolute_center[1] - (y_1_adjusted + y_2_adjusted) // 2
|
129 |
+
|
130 |
+
x_1_adjusted = x_1_adjusted + move_x
|
131 |
+
x_2_adjusted = x_2_adjusted + move_x
|
132 |
+
y_1_adjusted = y_1_adjusted + move_y
|
133 |
+
y_2_adjusted = y_2_adjusted + move_y
|
134 |
+
|
135 |
+
# print(y_1_adjusted, y_2_adjusted, x_1_adjusted, x_2_adjusted)
|
136 |
+
|
137 |
+
return padded_img[y_1_adjusted:y_2_adjusted, x_1_adjusted:x_2_adjusted]
|
138 |
+
|
139 |
+
|
140 |
+
def distance(a, b):
|
141 |
+
return np.sqrt((a[0] - b[0]) ** 2 + (a[1] - b[1]) ** 2)
|
142 |
+
|
143 |
+
|
144 |
+
def euclidean_distance(a, b):
|
145 |
+
x1 = a[0]; y1 = a[1]
|
146 |
+
x2 = b[0]; y2 = b[1]
|
147 |
+
return np.sqrt(((x2 - x1) * (x2 - x1)) + ((y2 - y1) * (y2 - y1)))
|
148 |
+
|
149 |
+
|
150 |
+
def align_face(img, landmarks, debug=False):
|
151 |
+
nose, right_eye, left_eye = landmarks
|
152 |
+
|
153 |
+
left_eye_x = left_eye[0]
|
154 |
+
left_eye_y = left_eye[1]
|
155 |
+
|
156 |
+
right_eye_x = right_eye[0]
|
157 |
+
right_eye_y = right_eye[1]
|
158 |
+
|
159 |
+
center_eye = ((left_eye[0] + right_eye[0]) // 2, (left_eye[1] + right_eye[1]) // 2)
|
160 |
+
|
161 |
+
if left_eye_y < right_eye_y:
|
162 |
+
point_3rd = (right_eye_x, left_eye_y)
|
163 |
+
direction = -1
|
164 |
+
else:
|
165 |
+
point_3rd = (left_eye_x, right_eye_y)
|
166 |
+
direction = 1
|
167 |
+
|
168 |
+
if debug:
|
169 |
+
cv2.circle(img, point_3rd, 1, (255, 0, 0), 1)
|
170 |
+
cv2.circle(img, center_eye, 1, (255, 0, 0), 1)
|
171 |
+
|
172 |
+
cv2.line(img, right_eye, left_eye, (0, 0, 0), 1)
|
173 |
+
cv2.line(img, left_eye, point_3rd, (0, 0, 0), 1)
|
174 |
+
cv2.line(img, right_eye, point_3rd, (0, 0, 0), 1)
|
175 |
+
|
176 |
+
a = euclidean_distance(left_eye, point_3rd)
|
177 |
+
b = euclidean_distance(right_eye, left_eye)
|
178 |
+
c = euclidean_distance(right_eye, point_3rd)
|
179 |
+
|
180 |
+
cos_a = (b * b + c * c - a * a) / (2 * b * c)
|
181 |
+
|
182 |
+
angle = np.arccos(cos_a)
|
183 |
+
|
184 |
+
angle = (angle * 180) / np.pi
|
185 |
+
|
186 |
+
if direction == -1:
|
187 |
+
angle = 90 - angle
|
188 |
+
ang = math.radians(direction * angle)
|
189 |
+
else:
|
190 |
+
ang = math.radians(direction * angle)
|
191 |
+
angle = 0 - angle
|
192 |
+
|
193 |
+
M = cv2.getRotationMatrix2D((64, 64), angle, 1)
|
194 |
+
new_img = cv2.warpAffine(img, M, (128, 128),
|
195 |
+
flags=cv2.INTER_CUBIC)
|
196 |
+
|
197 |
+
rotated_nose = (int((nose[0] - 64) * np.cos(ang) - (nose[1] - 64) * np.sin(ang) + 64),
|
198 |
+
int((nose[0] - 64) * np.sin(ang) + (nose[1] - 64) * np.cos(ang) + 64))
|
199 |
+
|
200 |
+
rotated_center_eye = (int((center_eye[0] - 64) * np.cos(ang) - (center_eye[1] - 64) * np.sin(ang) + 64),
|
201 |
+
int((center_eye[0] - 64) * np.sin(ang) + (center_eye[1] - 64) * np.cos(ang) + 64))
|
202 |
+
|
203 |
+
abolute_center = (rotated_center_eye[0], (rotated_nose[1] + rotated_center_eye[1]) // 2)
|
204 |
+
|
205 |
+
if debug:
|
206 |
+
cv2.circle(new_img, rotated_nose, 1, (0, 0, 255), 1)
|
207 |
+
cv2.circle(new_img, rotated_center_eye, 1, (0, 0, 255), 1)
|
208 |
+
cv2.circle(new_img, abolute_center, 1, (0, 0, 255), 1)
|
209 |
+
|
210 |
+
return new_img, abolute_center
|
211 |
+
|
212 |
+
|
213 |
+
def estimate_norm(lmk, image_size=112, mode='arcface', shrink_factor=1.0):
|
214 |
+
assert lmk.shape == (5, 2)
|
215 |
+
tform = trans.SimilarityTransform()
|
216 |
+
lmk_tran = np.insert(lmk, 2, values=np.ones(5), axis=1)
|
217 |
+
min_M = []
|
218 |
+
min_index = []
|
219 |
+
min_error = float('inf')
|
220 |
+
src_factor = image_size / 112
|
221 |
+
if mode == 'arcface':
|
222 |
+
src = arcface_src * shrink_factor + (1 - shrink_factor) * 56
|
223 |
+
src = src * src_factor
|
224 |
+
else:
|
225 |
+
src = src_map[image_size] * src_factor
|
226 |
+
for i in np.arange(src.shape[0]):
|
227 |
+
tform.estimate(lmk, src[i])
|
228 |
+
M = tform.params[0:2, :]
|
229 |
+
results = np.dot(M, lmk_tran.T)
|
230 |
+
results = results.T
|
231 |
+
error = np.sum(np.sqrt(np.sum((results - src[i])**2, axis=1)))
|
232 |
+
# print(error)
|
233 |
+
if error < min_error:
|
234 |
+
min_error = error
|
235 |
+
min_M = M
|
236 |
+
min_index = i
|
237 |
+
return min_M, min_index
|
238 |
+
|
239 |
+
|
240 |
+
def inverse_estimate_norm(lmk, t_lmk, image_size=112, mode='arcface', shrink_factor=1.0):
|
241 |
+
assert lmk.shape == (5, 2)
|
242 |
+
tform = trans.SimilarityTransform()
|
243 |
+
lmk_tran = np.insert(lmk, 2, values=np.ones(5), axis=1)
|
244 |
+
min_M = []
|
245 |
+
min_index = []
|
246 |
+
min_error = float('inf')
|
247 |
+
src_factor = image_size / 112
|
248 |
+
if mode == 'arcface':
|
249 |
+
src = arcface_src * shrink_factor + (1 - shrink_factor) * 56
|
250 |
+
src = src * src_factor
|
251 |
+
else:
|
252 |
+
src = src_map[image_size] * src_factor
|
253 |
+
for i in np.arange(src.shape[0]):
|
254 |
+
tform.estimate(t_lmk, lmk)
|
255 |
+
M = tform.params[0:2, :]
|
256 |
+
results = np.dot(M, lmk_tran.T)
|
257 |
+
results = results.T
|
258 |
+
error = np.sum(np.sqrt(np.sum((results - src[i])**2, axis=1)))
|
259 |
+
# print(error)
|
260 |
+
if error < min_error:
|
261 |
+
min_error = error
|
262 |
+
min_M = M
|
263 |
+
min_index = i
|
264 |
+
return min_M, min_index
|
265 |
+
|
266 |
+
|
267 |
+
def norm_crop(img, landmark, image_size=112, mode='arcface', shrink_factor=1.0):
|
268 |
+
"""
|
269 |
+
Align and crop the image based of the facial landmarks in the image. The alignment is done with
|
270 |
+
a similarity transformation based of source coordinates.
|
271 |
+
:param img: Image to transform.
|
272 |
+
:param landmark: Five landmark coordinates in the image.
|
273 |
+
:param image_size: Desired output size after transformation.
|
274 |
+
:param mode: 'arcface' aligns the face for the use of Arcface facial recognition model. Useful for
|
275 |
+
both facial recognition tasks and face swapping tasks.
|
276 |
+
:param shrink_factor: Shrink factor that shrinks the source landmark coordinates. This will include more border
|
277 |
+
information around the face. Useful when you want to include more background information when performing face swaps.
|
278 |
+
The lower the shrink factor the more of the face is included. Default value 1.0 will align the image to be ready
|
279 |
+
for the Arcface recognition model, but usually omits part of the chin. Value of 0.0 would transform all source points
|
280 |
+
to the middle of the image, probably rendering the alignment procedure useless.
|
281 |
+
If you process the image with a shrink factor of 0.85 and then want to extract the identity embedding with arcface,
|
282 |
+
you simply do a central crop of factor 0.85 to yield same cropped result as using shrink factor 1.0. This will
|
283 |
+
reduce the resolution, the recommendation is to processed images to output resolutions higher than 112 is using
|
284 |
+
Arcface. This will make sure no information is lost by resampling the image after central crop.
|
285 |
+
:return: Returns the transformed image.
|
286 |
+
"""
|
287 |
+
M, pose_index = estimate_norm(landmark, image_size, mode, shrink_factor=shrink_factor)
|
288 |
+
warped = cv2.warpAffine(img, M, (image_size, image_size), borderValue=0.0)
|
289 |
+
return warped
|
290 |
+
|
291 |
+
|
292 |
+
def transform_landmark_points(M, points):
|
293 |
+
lmk_tran = np.insert(points, 2, values=np.ones(5), axis=1)
|
294 |
+
transformed_lmk = np.dot(M, lmk_tran.T)
|
295 |
+
transformed_lmk = transformed_lmk.T
|
296 |
+
|
297 |
+
return transformed_lmk
|
298 |
+
|
299 |
+
|
300 |
+
def multi_convolver(image, kernel, iterations):
|
301 |
+
if kernel == "Sharpen":
|
302 |
+
kernel = np.array([[0, -1, 0],
|
303 |
+
[-1, 5, -1],
|
304 |
+
[0, -1, 0]])
|
305 |
+
elif kernel == "Unsharp_mask":
|
306 |
+
kernel = np.array([[1, 4, 6, 4, 1],
|
307 |
+
[4, 16, 24, 16, 1],
|
308 |
+
[6, 24, -476, 24, 1],
|
309 |
+
[4, 16, 24, 16, 1],
|
310 |
+
[1, 4, 6, 4, 1]]) * (-1 / 256)
|
311 |
+
elif kernel == "Blur":
|
312 |
+
kernel = (1 / 16.0) * np.array([[1., 2., 1.],
|
313 |
+
[2., 4., 2.],
|
314 |
+
[1., 2., 1.]])
|
315 |
+
for i in range(iterations):
|
316 |
+
image = convolve2d(image, kernel, 'same', boundary='fill', fillvalue = 0)
|
317 |
+
return image
|
318 |
+
|
319 |
+
|
320 |
+
def convolve_rgb(image, kernel, iterations=1):
|
321 |
+
img_yuv = rgb2yuv(image)
|
322 |
+
img_yuv[:, :, 0] = multi_convolver(img_yuv[:, :, 0], kernel,
|
323 |
+
iterations)
|
324 |
+
final_image = yuv2rgb(img_yuv)
|
325 |
+
|
326 |
+
return final_image.astype('float32')
|
327 |
+
|
328 |
+
|
329 |
+
def generate_mask_from_landmarks(lms, im_size):
|
330 |
+
blend_mask_lm = np.zeros(shape=(im_size, im_size, 3), dtype='float32')
|
331 |
+
|
332 |
+
# EYES
|
333 |
+
blend_mask_lm = cv2.circle(blend_mask_lm,
|
334 |
+
(int(lms[0][0]), int(lms[0][1])), 12, (255, 255, 255), 30)
|
335 |
+
blend_mask_lm = cv2.circle(blend_mask_lm,
|
336 |
+
(int(lms[1][0]), int(lms[1][1])), 12, (255, 255, 255), 30)
|
337 |
+
blend_mask_lm = cv2.circle(blend_mask_lm,
|
338 |
+
(int((lms[0][0] + lms[1][0]) / 2), int((lms[0][1] + lms[1][1]) / 2)),
|
339 |
+
16, (255, 255, 255), 65)
|
340 |
+
|
341 |
+
# NOSE
|
342 |
+
blend_mask_lm = cv2.circle(blend_mask_lm,
|
343 |
+
(int(lms[2][0]), int(lms[2][1])), 5, (255, 255, 255), 5)
|
344 |
+
blend_mask_lm = cv2.circle(blend_mask_lm,
|
345 |
+
(int((lms[0][0] + lms[1][0]) / 2), int(lms[2][1])), 16, (255, 255, 255), 100)
|
346 |
+
|
347 |
+
# MOUTH
|
348 |
+
blend_mask_lm = cv2.circle(blend_mask_lm,
|
349 |
+
(int(lms[3][0]), int(lms[3][1])), 6, (255, 255, 255), 30)
|
350 |
+
blend_mask_lm = cv2.circle(blend_mask_lm,
|
351 |
+
(int(lms[4][0]), int(lms[4][1])), 6, (255, 255, 255), 30)
|
352 |
+
|
353 |
+
blend_mask_lm = cv2.circle(blend_mask_lm,
|
354 |
+
(int((lms[3][0] + lms[4][0]) / 2), int((lms[3][1] + lms[4][1]) / 2)),
|
355 |
+
16, (255, 255, 255), 40)
|
356 |
+
return blend_mask_lm
|
357 |
+
|
358 |
+
|
359 |
+
def display_distance_text(im, distance, lms, im_w, im_h, scale=2):
|
360 |
+
blended_insert = cv2.putText(im, str(distance)[:4],
|
361 |
+
(int(lms[4] * im_w * 0.5), int(lms[5] * im_h * 0.8)),
|
362 |
+
cv2.FONT_HERSHEY_SIMPLEX, scale * 0.5, (0.08, 0.16, 0.08), int(scale * 2))
|
363 |
+
blended_insert = cv2.putText(blended_insert, str(distance)[:4],
|
364 |
+
(int(lms[4] * im_w * 0.5), int(lms[5] * im_h * 0.8)),
|
365 |
+
cv2.FONT_HERSHEY_SIMPLEX, scale* 0.5, (0.3, 0.7, 0.32), int(scale * 1))
|
366 |
+
return blended_insert
|
367 |
+
|
368 |
+
|
369 |
+
def get_lm(annotation, im_w, im_h):
|
370 |
+
lm_align = np.array([[annotation[4] * im_w, annotation[5] * im_h],
|
371 |
+
[annotation[6] * im_w, annotation[7] * im_h],
|
372 |
+
[annotation[8] * im_w, annotation[9] * im_h],
|
373 |
+
[annotation[10] * im_w, annotation[11] * im_h],
|
374 |
+
[annotation[12] * im_w, annotation[13] * im_h]],
|
375 |
+
dtype=np.float32)
|
376 |
+
return lm_align
|