Spaces:
Runtime error
Runtime error
File size: 5,581 Bytes
abc4a4a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
# import gradio as gr
# gr.Interface.load("models/rohitp1/kkkh_whisper_small_distillation_att_loss_libri360_epochs_100_batch_4_concat_dataset").launch()
import gradio as gr
import os
import transformers
from transformers import pipeline, Wav2Vec2ForCTC,Wav2Vec2Processor
import time
import torch
# def greet_from_secret(ignored_param):
# name = os.environ.get('TOKEN')
# return
auth_token = os.environ.get('TOKEN')
M1 = "rohitp1/dgx1_w2v2_base_teacher_student_distillation_mozilla_epochs_100_batch_16_concatenate_datasets"
M2 = "rohitp1/finetune_teacher_babble_noise_mozilla_200_epochs"
M3 = "rohitp1/finetune_teacher_clean_mozilla_200_epochs"
model1 = Wav2Vec2ForCTC.from_pretrained(M1, use_auth_token=auth_token)
processor1 = Wav2Vec2Processor.from_pretrained(M1, use_auth_token=auth_token)
model2 = Wav2Vec2ForCTC.from_pretrained(M2, use_auth_token=auth_token)
processor2 = Wav2Vec2Processor.from_pretrained(M2, use_auth_token=auth_token)
model3 = Wav2Vec2ForCTC.from_pretrained(M3, use_auth_token=auth_token)
processor3 = Wav2Vec2Processor.from_pretrained(M3, use_auth_token=auth_token)
# make quantized model
quantized_model1 = torch.quantization.quantize_dynamic(
model3, {torch.nn.Linear}, dtype=torch.qint8
)
p1 = pipeline('automatic-speech-recognition', model=model1, processor=processor1)
p2 = pipeline('automatic-speech-recognition', model=model2, processor=processor2)
p3 = pipeline('automatic-speech-recognition', model=model3, processor=processor3)
p1_quant = pipeline('automatic-speech-recognition', model=quantized_model1, processor=processor1)
def transcribe(mic_input, upl_input, model_type):
if mic_input:
audio = mic_input
else:
audio = upl_input
time.sleep(3)
st_time = time.time()
if model_type == 'NoisyFinetuned':
text = p2(audio)["text"]
elif model_type == 'CleanFinetuned':
text = p3(audio)["text"]
elif model_type == 'DistilledQuantised':
text = p1_quant(audio)['text']
else:
text = p1(audio)["text"]
end_time = time.time()
# state = text + " "
time_taken = round((end_time - st_time) / 60 , 4)
return text, time_taken
# gr.Interface(
# fn=transcribe,
# inputs=[
# gr.inputs.Audio(source="microphone", type="filepath"),
# 'state'
# ],
# outputs=[
# "textbox",
# "state"
# ],
# live=False).launch()
# demo = gr.load(
# "huggingface/rohitp1/kkkh_whisper_small_distillation_att_loss_libri360_epochs_100_batch_4_concat_dataset",
# title="Speech-to-text",
# inputs="mic",
# description="Let me try to guess what you're saying!",
# api_key="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"
# )
# demo.launch()
def clear_inputs_and_outputs():
return [None, None, "CleanFinetuned", None, None]
# Main function
if __name__ == "__main__":
demo = gr.Blocks()
with demo:
gr.Markdown(
"""
<center><h1> Noise Robust English Automatic Speech Recognition LibriSpeech Dataset</h1></center> \
This space is a demo of an English ASR model using Huggingface.<br> \
In this space, you can record your voice or upload a wav file and the model will predict the text spoken in the audio<br><br>
"""
)
with gr.Row():
## Input
with gr.Column():
mic_input = gr.Audio(source="microphone", type="filepath", label="Record your own voice")
upl_input = gr.Audio(
source="upload", type="filepath", label="Upload a wav file"
)
with gr.Row():
model_type = gr.inputs.Dropdown(["RobustDistillation", "NoisyFinetuned", "CleanFinetuned", "DistilledAndQuantised"], label='Model Type')
with gr.Row():
clr_btn = gr.Button(value="Clear", variant="secondary")
prd_btn = gr.Button(value="Predict")
# Outputs
with gr.Column():
lbl_output = gr.Label(label="Transcription")
with gr.Row():
time_output = gr.Label(label="Time Taken (in sec)")
# with gr.Group():
# gr.Markdown("<center>Prediction per time slot</center>")
# plt_output = gr.Plot(
# label="Prediction per time slot", show_label=False
# )
with gr.Row():
gr.Examples(
[
# os.path.join(os.path.dirname(__file__), "audio/sample1.wav"),
# os.path.join(os.path.dirname(__file__), "audio/sample2.wav"),
os.path.join(os.path.dirname(__file__), "audio/sample3.wav"),
],
upl_input,
[lbl_output, time_output],
transcribe
)
# Credits
with gr.Row():
gr.Markdown(
"""
<h4>Credits</h4>
Author: Rohit Prasad <br>
Check out the model <a href="https://huggingface.co/rohitp1/subh_whisper_small_distil_att_loss_mozilla_epochs_50_batch_8">here</a>
"""
)
clr_btn.click(
fn=clear_inputs_and_outputs,
inputs=[],
outputs=[mic_input, upl_input, model_type, lbl_output, time_output],
)
prd_btn.click(
fn=transcribe,
inputs=[mic_input, upl_input, model_type],
outputs=[lbl_output, time_output],
)
demo.launch(debug=True) |