Spaces:
Runtime error
Runtime error
# import gradio as gr | |
# gr.Interface.load("models/rohitp1/kkkh_whisper_small_distillation_att_loss_libri360_epochs_100_batch_4_concat_dataset").launch() | |
import gradio as gr | |
import os | |
import transformers | |
from transformers import pipeline, WhisperForConditionalGeneration, WhisperTokenizer, WhisperFeatureExtractor | |
import time | |
import torch | |
# def greet_from_secret(ignored_param): | |
# name = os.environ.get('TOKEN') | |
# return | |
auth_token = os.environ.get('TOKEN') | |
M1 = "rohitp1/subh_whisper_small_distil_att_loss_mozilla_epochs_50_batch_8" | |
M2 = "rohitp1/dgx1_whisper_small_finetune_teacher_babble_noise_mozilla_40_epochs_batch_8" | |
M3 = "rohitp1/dgx1_whisper_small_finetune_teacher_no_noise_mozilla_40_epochs_batch_8" | |
model1 = WhisperForConditionalGeneration.from_pretrained(M1, use_auth_token=auth_token) | |
tokenizer1 = WhisperTokenizer.from_pretrained(M1, use_auth_token=auth_token) | |
feat_ext1 = WhisperFeatureExtractor.from_pretrained(M1, use_auth_token=auth_token) | |
model2 = WhisperForConditionalGeneration.from_pretrained(M2, use_auth_token=auth_token) | |
tokenizer2 = WhisperTokenizer.from_pretrained(M2, use_auth_token=auth_token) | |
feat_ext2 = WhisperFeatureExtractor.from_pretrained(M2, use_auth_token=auth_token) | |
model3 = WhisperForConditionalGeneration.from_pretrained(M3, use_auth_token=auth_token) | |
tokenizer3 = WhisperTokenizer.from_pretrained(M3, use_auth_token=auth_token) | |
feat_ext3 = WhisperFeatureExtractor.from_pretrained(M3, use_auth_token=auth_token) | |
# make quantized model | |
# quantized_model1 = torch.quantization.quantize_dynamic( | |
# model1, {torch.nn.Linear}, dtype=torch.qint8 | |
# ) | |
p1 = pipeline('automatic-speech-recognition', model=model1, tokenizer=tokenizer1, feature_extractor=feat_ext1) | |
p2 = pipeline('automatic-speech-recognition', model=model2, tokenizer=tokenizer2, feature_extractor=feat_ext2) | |
p3 = pipeline('automatic-speech-recognition', model=model3, tokenizer=tokenizer3, feature_extractor=feat_ext3) | |
# p1_quant = pipeline('automatic-speech-recognition', model=quantized_model1, tokenizer=tokenizer1, feature_extractor=feat_ext1) | |
def transcribe(mic_input, upl_input, model_type): | |
if mic_input: | |
audio = mic_input | |
else: | |
audio = upl_input | |
time.sleep(3) | |
st_time = time.time() | |
if model_type == 'NoisyFinetuned': | |
text = p2(audio)["text"] | |
elif model_type == 'CleanFinetuned': | |
text = p3(audio)["text"] | |
# elif model_type == 'DistilledAndQuantised': | |
# text = p1_quant(audio)['text'] | |
else: | |
text = p1(audio)["text"] | |
end_time = time.time() | |
# state = text + " " | |
time_taken = round((end_time - st_time) / 60 , 4) | |
return text, time_taken | |
# gr.Interface( | |
# fn=transcribe, | |
# inputs=[ | |
# gr.inputs.Audio(source="microphone", type="filepath"), | |
# 'state' | |
# ], | |
# outputs=[ | |
# "textbox", | |
# "state" | |
# ], | |
# live=False).launch() | |
# demo = gr.load( | |
# "huggingface/rohitp1/kkkh_whisper_small_distillation_att_loss_libri360_epochs_100_batch_4_concat_dataset", | |
# title="Speech-to-text", | |
# inputs="mic", | |
# description="Let me try to guess what you're saying!", | |
# api_key="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" | |
# ) | |
# demo.launch() | |
def clear_inputs_and_outputs(): | |
return [None, None, "CleanFinetuned", None, None] | |
# Main function | |
if __name__ == "__main__": | |
demo = gr.Blocks() | |
with demo: | |
gr.Markdown( | |
""" | |
<center><h1> Noise Robust English Automatic Speech Recognition LibriSpeech Dataset</h1></center> \ | |
This space is a demo of an English ASR model using Huggingface.<br> \ | |
In this space, you can record your voice or upload a wav file and the model will predict the text spoken in the audio<br><br> | |
""" | |
) | |
with gr.Row(): | |
## Input | |
with gr.Column(): | |
mic_input = gr.Audio(source="microphone", type="filepath", label="Record your own voice") | |
upl_input = gr.Audio( | |
source="upload", type="filepath", label="Upload a wav file" | |
) | |
with gr.Row(): | |
model_type = gr.inputs.Dropdown(["RobustDistillation", "NoisyFinetuned", "CleanFinetuned"], label='Model Type') | |
with gr.Row(): | |
clr_btn = gr.Button(value="Clear", variant="secondary") | |
prd_btn = gr.Button(value="Predict") | |
# Outputs | |
with gr.Column(): | |
lbl_output = gr.Label(label="Transcription") | |
with gr.Row(): | |
time_output = gr.Label(label="Time Taken (in sec)") | |
# with gr.Group(): | |
# gr.Markdown("<center>Prediction per time slot</center>") | |
# plt_output = gr.Plot( | |
# label="Prediction per time slot", show_label=False | |
# ) | |
with gr.Row(): | |
gr.Examples( | |
[ | |
os.path.join(os.path.dirname(__file__), "audio/sample1.wav"), | |
os.path.join(os.path.dirname(__file__), "audio/sample2.wav"), | |
os.path.join(os.path.dirname(__file__), "audio/sample3.wav"), | |
], | |
upl_input, | |
[lbl_output, time_output], | |
transcribe | |
) | |
# Credits | |
with gr.Row(): | |
gr.Markdown( | |
""" | |
<h4>Credits</h4> | |
Author: Rohit Prasad <br> | |
Check out the model <a href="https://huggingface.co/rohitp1/subh_whisper_small_distil_att_loss_mozilla_epochs_50_batch_8">here</a> | |
""" | |
) | |
clr_btn.click( | |
fn=clear_inputs_and_outputs, | |
inputs=[], | |
outputs=[mic_input, upl_input, model_type, lbl_output, time_output], | |
) | |
prd_btn.click( | |
fn=transcribe, | |
inputs=[mic_input, upl_input, model_type], | |
outputs=[lbl_output, time_output], | |
) | |
demo.launch(debug=True) | |