Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -15,28 +15,28 @@ import time
|
|
15 |
|
16 |
|
17 |
auth_token = os.environ.get('TOKEN')
|
18 |
-
model1 = WhisperForConditionalGeneration.from_pretrained("rohitp1/kkkh_whisper_small_distillation_att_loss_libri360_epochs_100_batch_4_concat_dataset",
|
19 |
-
use_auth_token=auth_token)
|
20 |
|
21 |
-
tokenizer1 = WhisperTokenizer.from_pretrained("rohitp1/kkkh_whisper_small_distillation_att_loss_libri360_epochs_100_batch_4_concat_dataset",
|
22 |
-
use_auth_token=auth_token)
|
23 |
|
24 |
-
|
25 |
-
|
|
|
26 |
|
|
|
|
|
|
|
27 |
|
28 |
-
model2 = WhisperForConditionalGeneration.from_pretrained(
|
29 |
-
|
|
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
feat_ext2 = WhisperFeatureExtractor.from_pretrained("rohitp1/dgx2_whisper_small_finetune_teacher_babble_noise_libri_360_hours_50_epochs_batch_8",
|
35 |
-
use_auth_token=auth_token)
|
36 |
|
37 |
|
38 |
p1 = pipeline('automatic-speech-recognition', model=model1, tokenizer=tokenizer1, feature_extractor=feat_ext1)
|
39 |
p2 = pipeline('automatic-speech-recognition', model=model2, tokenizer=tokenizer2, feature_extractor=feat_ext2)
|
|
|
40 |
|
41 |
def transcribe(mic_input, upl_input, model_type):
|
42 |
if mic_input:
|
@@ -44,8 +44,10 @@ def transcribe(mic_input, upl_input, model_type):
|
|
44 |
else:
|
45 |
audio = upl_input
|
46 |
time.sleep(3)
|
47 |
-
if model_type =='
|
48 |
text = p2(audio)["text"]
|
|
|
|
|
49 |
else:
|
50 |
text = p1(audio)["text"]
|
51 |
# state = text + " "
|
@@ -77,7 +79,7 @@ def transcribe(mic_input, upl_input, model_type):
|
|
77 |
# demo.launch()
|
78 |
|
79 |
def clear_inputs_and_outputs():
|
80 |
-
return [None, None, "
|
81 |
|
82 |
# Main function
|
83 |
if __name__ == "__main__":
|
@@ -100,7 +102,7 @@ if __name__ == "__main__":
|
|
100 |
)
|
101 |
|
102 |
with gr.Row():
|
103 |
-
model_type = gr.inputs.Dropdown(["RobustDistillation", "
|
104 |
|
105 |
with gr.Row():
|
106 |
clr_btn = gr.Button(value="Clear", variant="secondary")
|
|
|
15 |
|
16 |
|
17 |
auth_token = os.environ.get('TOKEN')
|
|
|
|
|
18 |
|
|
|
|
|
19 |
|
20 |
+
M1 = "rohitp1/kkkh_whisper_small_distillation_att_loss_libri360_epochs_100_batch_4_concat_dataset"
|
21 |
+
M2 = "rohitp1/dgx2_whisper_small_finetune_teacher_babble_noise_libri_360_hours_50_epochs_batch_8"
|
22 |
+
M3 = "rohitp1/subhadeep_whisper_small_finetune_teacher_no_noise_libri_360_hours_100_epochs_batch_8"
|
23 |
|
24 |
+
model1 = WhisperForConditionalGeneration.from_pretrained(M1, use_auth_token=auth_token)
|
25 |
+
tokenizer1 = WhisperTokenizer.from_pretrained(M1, use_auth_token=auth_token)
|
26 |
+
feat_ext1 = WhisperFeatureExtractor.from_pretrained(M1, use_auth_token=auth_token)
|
27 |
|
28 |
+
model2 = WhisperForConditionalGeneration.from_pretrained(M2, use_auth_token=auth_token)
|
29 |
+
tokenizer2 = WhisperTokenizer.from_pretrained(M2, use_auth_token=auth_token)
|
30 |
+
feat_ext2 = WhisperFeatureExtractor.from_pretrained(M2, use_auth_token=auth_token)
|
31 |
|
32 |
+
model3 = WhisperForConditionalGeneration.from_pretrained(M3, use_auth_token=auth_token)
|
33 |
+
tokenizer3 = WhisperTokenizer.from_pretrained(M3, use_auth_token=auth_token)
|
34 |
+
feat_ext3 = WhisperFeatureExtractor.from_pretrained(M3, use_auth_token=auth_token)
|
|
|
|
|
35 |
|
36 |
|
37 |
p1 = pipeline('automatic-speech-recognition', model=model1, tokenizer=tokenizer1, feature_extractor=feat_ext1)
|
38 |
p2 = pipeline('automatic-speech-recognition', model=model2, tokenizer=tokenizer2, feature_extractor=feat_ext2)
|
39 |
+
p3 = pipeline('automatic-speech-recognition', model=model3, tokenizer=tokenizer3, feature_extractor=feat_ext3)
|
40 |
|
41 |
def transcribe(mic_input, upl_input, model_type):
|
42 |
if mic_input:
|
|
|
44 |
else:
|
45 |
audio = upl_input
|
46 |
time.sleep(3)
|
47 |
+
if model_type == 'NoisyFinetuned':
|
48 |
text = p2(audio)["text"]
|
49 |
+
elif model_type == 'CleanFinetuned':
|
50 |
+
text = p3(audio)["text"]
|
51 |
else:
|
52 |
text = p1(audio)["text"]
|
53 |
# state = text + " "
|
|
|
79 |
# demo.launch()
|
80 |
|
81 |
def clear_inputs_and_outputs():
|
82 |
+
return [None, None, "CleanFinetuned", None]
|
83 |
|
84 |
# Main function
|
85 |
if __name__ == "__main__":
|
|
|
102 |
)
|
103 |
|
104 |
with gr.Row():
|
105 |
+
model_type = gr.inputs.Dropdown(["RobustDistillation", "NoisyFinetuned", "CleanFinetuned"], label='Model Type')
|
106 |
|
107 |
with gr.Row():
|
108 |
clr_btn = gr.Button(value="Clear", variant="secondary")
|