rohitp1 commited on
Commit
f2af138
·
1 Parent(s): e651795

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -1
app.py CHANGED
@@ -8,6 +8,7 @@ import os
8
  import transformers
9
  from transformers import pipeline, WhisperForConditionalGeneration, WhisperTokenizer, WhisperFeatureExtractor
10
  import time
 
11
 
12
  # def greet_from_secret(ignored_param):
13
  # name = os.environ.get('TOKEN')
@@ -34,9 +35,16 @@ tokenizer3 = WhisperTokenizer.from_pretrained(M3, use_auth_token=auth_token)
34
  feat_ext3 = WhisperFeatureExtractor.from_pretrained(M3, use_auth_token=auth_token)
35
 
36
 
 
 
 
 
 
 
37
  p1 = pipeline('automatic-speech-recognition', model=model1, tokenizer=tokenizer1, feature_extractor=feat_ext1)
38
  p2 = pipeline('automatic-speech-recognition', model=model2, tokenizer=tokenizer2, feature_extractor=feat_ext2)
39
  p3 = pipeline('automatic-speech-recognition', model=model3, tokenizer=tokenizer3, feature_extractor=feat_ext3)
 
40
 
41
  def transcribe(mic_input, upl_input, model_type):
42
  if mic_input:
@@ -49,6 +57,8 @@ def transcribe(mic_input, upl_input, model_type):
49
  text = p2(audio)["text"]
50
  elif model_type == 'CleanFinetuned':
51
  text = p3(audio)["text"]
 
 
52
  else:
53
  text = p1(audio)["text"]
54
  end_time = time.time()
@@ -105,7 +115,7 @@ if __name__ == "__main__":
105
  )
106
 
107
  with gr.Row():
108
- model_type = gr.inputs.Dropdown(["RobustDistillation", "NoisyFinetuned", "CleanFinetuned"], label='Model Type')
109
 
110
  with gr.Row():
111
  clr_btn = gr.Button(value="Clear", variant="secondary")
 
8
  import transformers
9
  from transformers import pipeline, WhisperForConditionalGeneration, WhisperTokenizer, WhisperFeatureExtractor
10
  import time
11
+ import torch
12
 
13
  # def greet_from_secret(ignored_param):
14
  # name = os.environ.get('TOKEN')
 
35
  feat_ext3 = WhisperFeatureExtractor.from_pretrained(M3, use_auth_token=auth_token)
36
 
37
 
38
+ # make quantized model
39
+ quantized_model1 = torch.quantization.quantize_dynamic(
40
+ model3, {torch.nn.Linear}, dtype=torch.qint8
41
+ )
42
+
43
+
44
  p1 = pipeline('automatic-speech-recognition', model=model1, tokenizer=tokenizer1, feature_extractor=feat_ext1)
45
  p2 = pipeline('automatic-speech-recognition', model=model2, tokenizer=tokenizer2, feature_extractor=feat_ext2)
46
  p3 = pipeline('automatic-speech-recognition', model=model3, tokenizer=tokenizer3, feature_extractor=feat_ext3)
47
+ p1_quant = pipeline('automatic-speech-recognition', model=model1, tokenizer=tokenizer1, feature_extractor=feat_ext1)
48
 
49
  def transcribe(mic_input, upl_input, model_type):
50
  if mic_input:
 
57
  text = p2(audio)["text"]
58
  elif model_type == 'CleanFinetuned':
59
  text = p3(audio)["text"]
60
+ elif model_type == 'NoisyDistillationQuantised':
61
+ text = p1_quant(audio)['text']
62
  else:
63
  text = p1(audio)["text"]
64
  end_time = time.time()
 
115
  )
116
 
117
  with gr.Row():
118
+ model_type = gr.inputs.Dropdown(["RobustDistillation", "NoisyFinetuned", "CleanFinetuned", "NoisyDistillationQuantised"], label='Model Type')
119
 
120
  with gr.Row():
121
  clr_btn = gr.Button(value="Clear", variant="secondary")