Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -26,7 +26,7 @@ feat_ext = WhisperFeatureExtractor.from_pretrained("rohitp1/kkkh_whisper_small_d
|
|
26 |
|
27 |
p = pipeline('automatic-speech-recognition', model=model, tokenizer=tokenizer, feature_extractor=feat_ext)
|
28 |
|
29 |
-
def transcribe(mic_input, upl_input):
|
30 |
if mic_input:
|
31 |
audio = mic_input
|
32 |
else:
|
@@ -34,7 +34,7 @@ def transcribe(mic_input, upl_input):
|
|
34 |
time.sleep(3)
|
35 |
text = p(audio)["text"]
|
36 |
# state = text + " "
|
37 |
-
return text
|
38 |
|
39 |
|
40 |
|
@@ -62,7 +62,7 @@ def transcribe(mic_input, upl_input):
|
|
62 |
# demo.launch()
|
63 |
|
64 |
def clear_inputs_and_outputs():
|
65 |
-
return [None, None, None]
|
66 |
|
67 |
# Main function
|
68 |
if __name__ == "__main__":
|
@@ -84,10 +84,14 @@ if __name__ == "__main__":
|
|
84 |
source="upload", type="filepath", label="Upload a wav file"
|
85 |
)
|
86 |
|
|
|
|
|
|
|
87 |
with gr.Row():
|
88 |
clr_btn = gr.Button(value="Clear", variant="secondary")
|
89 |
prd_btn = gr.Button(value="Predict")
|
90 |
|
|
|
91 |
# Outputs
|
92 |
with gr.Column():
|
93 |
lbl_output = gr.Label(label="Top Predictions")
|
@@ -111,11 +115,11 @@ if __name__ == "__main__":
|
|
111 |
clr_btn.click(
|
112 |
fn=clear_inputs_and_outputs,
|
113 |
inputs=[],
|
114 |
-
outputs=[mic_input, upl_input, lbl_output],
|
115 |
)
|
116 |
prd_btn.click(
|
117 |
fn=transcribe,
|
118 |
-
inputs=[mic_input, upl_input],
|
119 |
outputs=[lbl_output],
|
120 |
)
|
121 |
|
|
|
26 |
|
27 |
p = pipeline('automatic-speech-recognition', model=model, tokenizer=tokenizer, feature_extractor=feat_ext)
|
28 |
|
29 |
+
def transcribe(mic_input, upl_input, model_type):
|
30 |
if mic_input:
|
31 |
audio = mic_input
|
32 |
else:
|
|
|
34 |
time.sleep(3)
|
35 |
text = p(audio)["text"]
|
36 |
# state = text + " "
|
37 |
+
return text+" "+model_type
|
38 |
|
39 |
|
40 |
|
|
|
62 |
# demo.launch()
|
63 |
|
64 |
def clear_inputs_and_outputs():
|
65 |
+
return [None, None, None, None]
|
66 |
|
67 |
# Main function
|
68 |
if __name__ == "__main__":
|
|
|
84 |
source="upload", type="filepath", label="Upload a wav file"
|
85 |
)
|
86 |
|
87 |
+
with gr.Row():
|
88 |
+
model_type = gr.inputs.Dropdown("gpt2", "distilgpt2"], type="text", label='Model Type')
|
89 |
+
|
90 |
with gr.Row():
|
91 |
clr_btn = gr.Button(value="Clear", variant="secondary")
|
92 |
prd_btn = gr.Button(value="Predict")
|
93 |
|
94 |
+
|
95 |
# Outputs
|
96 |
with gr.Column():
|
97 |
lbl_output = gr.Label(label="Top Predictions")
|
|
|
115 |
clr_btn.click(
|
116 |
fn=clear_inputs_and_outputs,
|
117 |
inputs=[],
|
118 |
+
outputs=[mic_input, upl_input, model_type, lbl_output],
|
119 |
)
|
120 |
prd_btn.click(
|
121 |
fn=transcribe,
|
122 |
+
inputs=[mic_input, upl_input, model_type],
|
123 |
outputs=[lbl_output],
|
124 |
)
|
125 |
|