# import gradio as gr # gr.Interface.load("models/rohitp1/kkkh_whisper_small_distillation_att_loss_libri360_epochs_100_batch_4_concat_dataset").launch() import gradio as gr import os import transformers from transformers import pipeline import time p = pipeline('automatic-speech-recognition', model='rohitp1/kkkh_whisper_small_distillation_att_loss_libri360_epochs_100_batch_4_concat_dataset') def transcribe(audio, state=""): time.sleep(3) text = p(audio)["text"] state += text + " " return state, state gr.Interface( fn=transcribe, inputs=[ gr.inputs.Audio(source="microphone", type="filepath"), 'state' ], outputs=[ "textbox", "state" ], live=False).launch()