Rohit Rajpoot
Update app.py
749d4de
raw
history blame
2.2 kB
import streamlit as st
# Your existing demos
from assist.chat import chat as embed_chat
from assist.bayes_chat import bayes_chat
from assist.transformer_demo import transformer_next
# DeepSeek imports
from transformers import AutoModelForCausalLM, AutoTokenizer, TextGenerationPipeline
st.set_page_config(page_title="RepoSage All-in-One Demo", layout="wide")
st.title("🤖 RepoSage Unified Demo")
# Cache and load DeepSeek-R1
@st.cache_resource
def load_deepseek():
model_name = "deepseek-ai/DeepSeek-Coder-1.3B-base"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
return TextGenerationPipeline(model=model, tokenizer=tokenizer)
deepseek_gen = load_deepseek()
# User input
question = st.text_input("Enter your question or prompt below:")
# Four buttons side by side, with DeepSeek first
col1, col2, col3, col4 = st.columns(4)
math_prefix = (
"You are an expert math tutor. Compute the derivative of f(x) = x^2·sin(x) "
"step by step using the product rule. Show each line of work."
)
with col1:
if st.button("DeepSeek-R1 Math Demo"):
if not question.strip():
st.warning("Please enter a prompt first.")
else:
# 1) Build the full math prompt
prompt = f"{math_prefix}\n\nf(x) = {question}\n\nSolution:\n"
# 2) Call the model deterministically
with st.spinner("Working it out…"):
out = deepseek_gen(
prompt,
max_new_tokens=80,
do_sample=False, # no random sampling
temperature=0.0 # fully deterministic
)
# 3) Display the clean, step-by-step answer
st.code(out[0]["generated_text"], language="text")
with col2:
if st.button("Embedding Q&A"):
st.write(embed_chat(question))
with col3:
if st.button("Bayesian Q&A"):
st.write(bayes_chat(question))
with col4:
if st.button("Transformer Demo"):
st.write(transformer_next(question))
st.markdown("---")
st.caption("DeepSeek-R1, Embedding, Bayesian & Transformer demos all in one place ✅")