|
import gradio as gr |
|
import torch |
|
import commons |
|
import utils |
|
from models import SynthesizerTrn |
|
from text.symbols import symbols |
|
from text import text_to_sequence |
|
import numpy as np |
|
import os |
|
import translators.server as tss |
|
|
|
from torch.utils import mkldnn |
|
|
|
mkldnn.enabled = False |
|
os.environ['LRU_CACHE_CAPACITY'] = '1' |
|
|
|
|
|
def get_text(text, hps): |
|
text_norm = text_to_sequence(text, hps.data.text_cleaners) |
|
if hps.data.add_blank: |
|
text_norm = commons.intersperse(text_norm, 0) |
|
text_norm = torch.LongTensor(text_norm) |
|
return text_norm |
|
|
|
hps = utils.get_hparams_from_file("./configs/uma87.json") |
|
net_g = SynthesizerTrn( |
|
len(symbols), |
|
hps.data.filter_length // 2 + 1, |
|
hps.train.segment_size // hps.data.hop_length, |
|
n_speakers=hps.data.n_speakers, |
|
**hps.model) |
|
_ = net_g.eval() |
|
|
|
_ = utils.load_checkpoint("pretrained_models/G_1153000.pth", net_g, None) |
|
|
|
title = "Umamusume voice synthesizer \n 赛马娘语音合成器" |
|
description = """ |
|
This synthesizer is created based on VITS (https://arxiv.org/abs/2106.06103) model, trained on voice data extracted from mobile game Umamusume Pretty Derby\n |
|
这个合成器是基于VITS文本到语音模型,在从手游《賽馬娘:Pretty Derby》解包的语音数据上训练得到。\n |
|
If your input language is not Japanese, it will be translated to Japanese by Google translator, but accuracy is not guaranteed.\n |
|
如果您的输入语言不是日语,则会由谷歌翻译自动翻译为日语,但是准确性不能保证。\n\n |
|
若使用人数太多可能会出现排队过久的情况,若有需要可选择本地部署\n\n |
|
""" |
|
article = """ |
|
|
|
""" |
|
|
|
|
|
def infer(text, character, language, duration, noise_scale, noise_scale_w): |
|
if language == '日本語': |
|
pass |
|
elif language == '简体中文': |
|
text = tss.google(text, from_language='zh', to_language='ja') |
|
elif language == 'English': |
|
text = tss.google(text, from_language='en', to_language='ja') |
|
char_id = int(character.split(':')[0]) |
|
stn_tst = get_text(text, hps) |
|
with torch.no_grad(): |
|
x_tst = stn_tst.unsqueeze(0) |
|
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]) |
|
sid = torch.LongTensor([char_id]) |
|
audio = net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=duration)[0][0,0].data.cpu().float().numpy() |
|
return (text,(22050, audio)) |
|
|
|
|
|
textbox = gr.Textbox(label="Text", placeholder="Type your sentence here", lines=2) |
|
|
|
char_dropdown = gr.Dropdown(['0:特别周','1:无声铃鹿','2:东海帝王','3:丸善斯基', |
|
'4:富士奇迹','5:小栗帽','6:黄金船','7:伏特加', |
|
'8:大和赤骥','9:大树快车','10:草上飞','11:菱亚马逊', |
|
'12:目白麦昆','13:神鹰','14:好歌剧','15:成田白仁', |
|
'16:鲁道夫象征','17:气槽','18:爱丽数码','19:青云天空', |
|
'20:玉藻十字','21:美妙姿势','22:琵琶晨光','23:重炮', |
|
'24:曼城茶座','25:美普波旁','26:目白雷恩','27:菱曙', |
|
'28:雪之美人','29:米浴','30:艾尼斯风神','31:爱丽速子', |
|
'32:爱慕织姬','33:稻荷一','34:胜利奖券','35:空中神宫', |
|
'36:荣进闪耀','37:真机伶','38:川上公主','39:黄金城市', |
|
'40:樱花进王','41:采珠','42:新光风','43:东商变革', |
|
'44:超级小溪','45:醒目飞鹰','46:荒漠英雄','47:东瀛佐敦', |
|
'48:中山庆典','49:成田大进','50:西野花','51:春乌拉拉', |
|
'52:青竹回忆','53:微光飞驹','54:美丽周日','55:待兼福来', |
|
'56:Mr.C.B','57:名将怒涛','58:目白多伯','59:优秀素质', |
|
'60:帝王光环','61:待兼诗歌剧','62:生野狄杜斯','63:目白善信', |
|
'64:大拓太阳神','65:双涡轮','66:里见光钻','67:北部玄驹', |
|
'68:樱花千代王','69:天狼星象征','70:目白阿尔丹','71:八重无敌', |
|
'72:鹤丸刚志','73:目白光明','74:樱花桂冠','75:成田路', |
|
'76:也文摄辉','77:吉兆','78:谷野美酒','79:第一红宝石', |
|
'80:真弓快车','81:骏川手纲','82:凯斯奇迹','83:小林历奇', |
|
'84:北港火山','85:奇锐骏','86:秋川理事长']) |
|
language_dropdown = gr.Dropdown(['日本語','简体中文','English', 1, 0.667, 0.8]) |
|
examples = [['お疲れ様です,トレーナーさん。', '1:无声铃鹿', '日本語', 1, 0.667, 0.8], |
|
['張り切っていこう!', '67:北部玄驹', '日本語', 1, 0.667, 0.8], |
|
['何でこんなに慣れでんのよ,私のほが先に好きだっだのに。', '10:草上飞','日本語', 1, 0.667, 0.8], |
|
['授業中に出しだら,学校生活終わるですわ。', '12:目白麦昆','日本語', 1, 0.667, 0.8], |
|
['お帰りなさい,お兄様!', '29:米浴','日本語', 1, 0.667, 0.8], |
|
['私の処女をもらっでください!', '29:米浴','日本語', 1, 0.667, 0.8]] |
|
|
|
duration_slider = gr.Slider(minimum=0.1, maximum=5, value=1, step=0.1, label='时长 Duration') |
|
noise_scale_slider = gr.Slider(minimum=0.1, maximum=5, value=0.667, step=0.001, label='噪声比例 noise_scale') |
|
noise_scale_w_slider = gr.Slider(minimum=0.1, maximum=5, value=0.8, step=0.1, label='噪声偏差 noise_scale_w') |
|
|
|
|
|
gr.Interface(fn=infer, inputs=[textbox, char_dropdown, language_dropdown, duration_slider, noise_scale_slider, noise_scale_w_slider,], outputs=["text","audio"],title=title, description=description, article=article, examples=examples).launch() |