|
import argparse |
|
import json |
|
import os |
|
import re |
|
import tempfile |
|
import logging |
|
logging.getLogger('numba').setLevel(logging.WARNING) |
|
import librosa |
|
import numpy as np |
|
import torch |
|
from torch import no_grad, LongTensor |
|
import commons |
|
import utils |
|
import gradio as gr |
|
import gradio.utils as gr_utils |
|
import gradio.processing_utils as gr_processing_utils |
|
from ONNXVITS_infer import SynthesizerTrn |
|
from text import text_to_sequence, _clean_text |
|
from text.symbols import symbols |
|
from mel_processing import spectrogram_torch |
|
import psutil |
|
from datetime import datetime |
|
|
|
def audio_postprocess(self, y): |
|
if y is None: |
|
return None |
|
|
|
if gr_utils.validate_url(y): |
|
file = gr_processing_utils.download_to_file(y, dir=self.temp_dir) |
|
elif isinstance(y, tuple): |
|
sample_rate, data = y |
|
file = tempfile.NamedTemporaryFile( |
|
suffix=".wav", dir=self.temp_dir, delete=False |
|
) |
|
gr_processing_utils.audio_to_file(sample_rate, data, file.name) |
|
else: |
|
file = gr_processing_utils.create_tmp_copy_of_file(y, dir=self.temp_dir) |
|
|
|
return gr_processing_utils.encode_url_or_file_to_base64(file.name) |
|
|
|
|
|
language_marks = { |
|
"日本語": "[JA]", |
|
"简体中文": "[ZH]", |
|
"English": "[EN]", |
|
"Mix": "", |
|
} |
|
|
|
gr.Audio.postprocess = audio_postprocess |
|
|
|
limitation = os.getenv("SYSTEM") == "spaces" |
|
def create_tts_fn(model, hps, speaker_ids): |
|
def tts_fn(text, speaker, language, speed, is_symbol): |
|
if limitation: |
|
text_len = len(re.sub("\[([A-Z]{2})\]", "", text)) |
|
max_len = 150 |
|
if is_symbol: |
|
max_len *= 3 |
|
if text_len > max_len: |
|
return "Error: Text is too long", None |
|
if language is not None: |
|
text = language_marks[language] + text + language_marks[language] |
|
speaker_id = speaker_ids[speaker] |
|
stn_tst = get_text(text, hps, is_symbol) |
|
with no_grad(): |
|
x_tst = stn_tst.unsqueeze(0) |
|
x_tst_lengths = LongTensor([stn_tst.size(0)]) |
|
sid = LongTensor([speaker_id]) |
|
audio = model.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8, |
|
length_scale=1.0 / speed)[0][0, 0].data.cpu().float().numpy() |
|
del stn_tst, x_tst, x_tst_lengths, sid |
|
return "Success", (hps.data.sampling_rate, audio) |
|
|
|
return tts_fn |
|
|
|
def create_vc_fn(model, hps, speaker_ids): |
|
def vc_fn(original_speaker, target_speaker, input_audio): |
|
if input_audio is None: |
|
return "You need to upload an audio", None |
|
sampling_rate, audio = input_audio |
|
duration = audio.shape[0] / sampling_rate |
|
if limitation and duration > 30: |
|
return "Error: Audio is too long", None |
|
original_speaker_id = speaker_ids[original_speaker] |
|
target_speaker_id = speaker_ids[target_speaker] |
|
|
|
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32) |
|
if len(audio.shape) > 1: |
|
audio = librosa.to_mono(audio.transpose(1, 0)) |
|
if sampling_rate != hps.data.sampling_rate: |
|
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=hps.data.sampling_rate) |
|
with no_grad(): |
|
y = torch.FloatTensor(audio) |
|
y = y.unsqueeze(0) |
|
spec = spectrogram_torch(y, hps.data.filter_length, |
|
hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length, |
|
center=False).to(device) |
|
spec_lengths = LongTensor([spec.size(-1)]).to(device) |
|
sid_src = LongTensor([original_speaker_id]).to(device) |
|
sid_tgt = LongTensor([target_speaker_id]).to(device) |
|
audio = model.voice_conversion(spec, spec_lengths, sid_src=sid_src, sid_tgt=sid_tgt)[0][ |
|
0, 0].data.cpu().float().numpy() |
|
del y, spec, spec_lengths, sid_src, sid_tgt |
|
return "Success", (hps.data.sampling_rate, audio) |
|
|
|
return vc_fn |
|
|
|
def get_text(text, hps, is_symbol): |
|
text_norm = text_to_sequence(text, hps.symbols, [] if is_symbol else hps.data.text_cleaners) |
|
if hps.data.add_blank: |
|
text_norm = commons.intersperse(text_norm, 0) |
|
text_norm = LongTensor(text_norm) |
|
return text_norm |
|
|
|
def create_to_symbol_fn(hps): |
|
def to_symbol_fn(is_symbol_input, input_text, temp_text): |
|
return (_clean_text(input_text, hps.data.text_cleaners), input_text) if is_symbol_input \ |
|
else (temp_text, temp_text) |
|
|
|
return to_symbol_fn |
|
|
|
download_audio_js = """ |
|
() =>{{ |
|
let root = document.querySelector("body > gradio-app"); |
|
if (root.shadowRoot != null) |
|
root = root.shadowRoot; |
|
let audio = root.querySelector("#{audio_id}").querySelector("audio"); |
|
if (audio == undefined) |
|
return; |
|
audio = audio.src; |
|
let oA = document.createElement("a"); |
|
oA.download = Math.floor(Math.random()*100000000)+'.wav'; |
|
oA.href = audio; |
|
document.body.appendChild(oA); |
|
oA.click(); |
|
oA.remove(); |
|
}} |
|
""" |
|
|
|
models_tts = [] |
|
models_vc = [] |
|
models_info = [ |
|
{ |
|
"title": "Japanese", |
|
"languages": ["日本語"], |
|
"description": "", |
|
"model_path": "./pretrained_models/G_1153000.pth", |
|
"config_path": "./configs/uma87.json" |
|
"examples": [['お疲れ様です,トレーナーさん。', 'Silence Suzuka', '日本語', 1, False], |
|
['張り切っていこう!', 'Kitasan Black', '日本語', 1, False], |
|
['何でこんなに慣れでんのよ,私のほが先に好きだっだのに。', 'Grass Wonder', '日本語', 1, False], |
|
['授業中に出しだら,学校生活終わるですわ。', 'Mejiro Mcqueen', '日本語', 1, False], |
|
['お帰りなさい,お兄様!', 'Rice Shower', '日本語', 1, False], |
|
['私の処女をもらっでください!', 'Rice Shower', '日本語', 1, False]] |
|
}, |
|
{ |
|
"title": "Japanese", |
|
"languages": ['日本語', '简体中文', 'English', 'Mix'], |
|
"description": "", |
|
"model_path": "./pretrained_models/G_1396000.pth", |
|
"config_path": "./configs/uma_trilingual.json" |
|
"examples": [['你好,训练员先生,很高兴见到你。', '草上飞 Grass Wonder (Umamusume Pretty Derby)', '简体中文', 1, False], |
|
['To be honest, I have no idea what to say as examples.', '派蒙 Paimon (Genshin Impact)', 'English', 1, False], |
|
['授業中に出しだら,学校生活終わるですわ。', '綾地 寧々 Ayachi Nene (Sanoba Witch)', '日本語', 1, False]] |
|
} |
|
] |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--share", action="store_true", default=False, help="share gradio app") |
|
args = parser.parse_args() |
|
for info in models_info: |
|
name = info['title'] |
|
lang = info['languages'] |
|
examples = info['examples'] |
|
config_path = info['config_path'] |
|
model_path = info['model_path'] |
|
hps = utils.get_hparams_from_file(config_path) |
|
model = SynthesizerTrn( |
|
len(hps.symbols), |
|
hps.data.filter_length // 2 + 1, |
|
hps.train.segment_size // hps.data.hop_length, |
|
n_speakers=hps.data.n_speakers, |
|
**hps.model) |
|
utils.load_checkpoint(model_path, model, None) |
|
model.eval() |
|
speaker_ids = hps.speakers |
|
speakers = list(hps.speakers.keys()) |
|
models_tts.append((name, speakers, lang, example, |
|
hps.symbols, create_tts_fn(model, hps, speaker_ids), |
|
create_to_symbol_fn(hps))) |
|
models_vc.append((name, speakers, create_vc_fn(model, hps, speaker_ids))) |
|
app = gr.Blocks() |
|
with app: |
|
gr.Markdown("# English & Chinese & Japanese Anime TTS\n\n" |
|
"![visitor badge](https://visitor-badge.glitch.me/badge?page_id=Plachta.VITS-Umamusume-voice-synthesizer)\n\n" |
|
"Including Japanese TTS & Trilingual TTS, speakers are all anime characters. 包含一个纯日语TTS和一个中日英三语TTS模型,主要为二次元角色。" |
|
"If you have any suggestions or bug reports, feel free to open discussion in [Community](https://huggingface.co/spaces/Plachta/VITS-Umamusume-voice-synthesizer/discussions).\n\n" |
|
"若有bug反馈或建议,请在[Community](https://huggingface.co/spaces/Plachta/VITS-Umamusume-voice-synthesizer/discussions)下开启一个新的Discussion。 \n\n" |
|
) |
|
with gr.Tabs(): |
|
with gr.TabItem("TTS"): |
|
with gr.Tabs(): |
|
for i, (name, speakers, lang, example, symbols, tts_fn, to_symbol_fn) in enumerate(models_tts): |
|
with gr.TabItem(name) |
|
with gr.Row(): |
|
with gr.Column(): |
|
textbox = gr.TextArea(label="Text", placeholder="Type your sentence here (Maximum 150 words)", value="こんにちわ。", elem_id=f"tts-input") |
|
with gr.Accordion(label="Phoneme Input", open=False): |
|
temp_text_var = gr.Variable() |
|
symbol_input = gr.Checkbox(value=False, label="Symbol input") |
|
symbol_list = gr.Dataset(label="Symbol list", components=[textbox], |
|
samples=[[x] for x in symbols], |
|
elem_id=f"symbol-list") |
|
symbol_list_json = gr.Json(value=symbols, visible=False) |
|
symbol_input.change(to_symbol_fn, |
|
[symbol_input, textbox, temp_text_var], |
|
[textbox, temp_text_var]) |
|
symbol_list.click(None, [symbol_list, symbol_list_json], textbox, |
|
_js=f""" |
|
(i, symbols, text) => {{ |
|
let root = document.querySelector("body > gradio-app"); |
|
if (root.shadowRoot != null) |
|
root = root.shadowRoot; |
|
let text_input = root.querySelector("#tts-input").querySelector("textarea"); |
|
let startPos = text_input.selectionStart; |
|
let endPos = text_input.selectionEnd; |
|
let oldTxt = text_input.value; |
|
let result = oldTxt.substring(0, startPos) + symbols[i] + oldTxt.substring(endPos); |
|
text_input.value = result; |
|
let x = window.scrollX, y = window.scrollY; |
|
text_input.focus(); |
|
text_input.selectionStart = startPos + symbols[i].length; |
|
text_input.selectionEnd = startPos + symbols[i].length; |
|
text_input.blur(); |
|
window.scrollTo(x, y); |
|
|
|
text = text_input.value; |
|
|
|
return text; |
|
}}""") |
|
|
|
char_dropdown = gr.Dropdown(choices=speakers, value=speakers[0], label='character') |
|
language_dropdown = gr.Dropdown(choices=lang, value=lang[0], label='language') |
|
duration_slider = gr.Slider(minimum=0.1, maximum=5, value=1, step=0.1, label='时长 Duration') |
|
with gr.Column(): |
|
text_output = gr.Textbox(label="Message") |
|
audio_output = gr.Audio(label="Output Audio", elem_id="tts-audio") |
|
btn = gr.Button("Generate!") |
|
|
|
download = gr.Button("Download Audio") |
|
download.click(None, [], [], _js=download_audio_js.format(audio_id="tts-audio")) |
|
if len(lang) == 1: |
|
btn.click(tts_fn, inputs=[textbox, char_dropdown, None, duration_slider, symbol_input], |
|
outputs=[text_output, audio_output]) |
|
else: |
|
btn.click(tts_fn, inputs=[textbox, char_dropdown, language_dropdown, duration_slider, symbol_input], |
|
outputs=[text_output, audio_output]) |
|
gr.Examples( |
|
examples=example, |
|
inputs=[textbox, char_dropdown, language_dropdown, |
|
duration_slider, symbol_input], |
|
outputs=[text_output, audio_output], |
|
fn=tts_fn |
|
) |
|
app.queue(concurrency_count=3).launch(show_api=False, share=args.share) |