Create app.py with Zero-Shot Image Classification
Browse files
app.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import CLIPModel, CLIPProcessor
|
2 |
+
from PIL import Image
|
3 |
+
import time
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
|
7 |
+
openai_model_name = "openai/clip-vit-large-patch14"
|
8 |
+
openai_model = CLIPModel.from_pretrained(openai_model_name)
|
9 |
+
openai_processor = CLIPProcessor.from_pretrained(openai_model_name)
|
10 |
+
|
11 |
+
patrickjohncyh_model_name = "patrickjohncyh/fashion-clip"
|
12 |
+
patrickjohncyh_model = CLIPModel.from_pretrained(patrickjohncyh_model_name)
|
13 |
+
patrickjohncyh_processor = CLIPProcessor.from_pretrained(patrickjohncyh_model_name)
|
14 |
+
|
15 |
+
model_map = {
|
16 |
+
openai_model_name: (openai_model, openai_processor),
|
17 |
+
patrickjohncyh_model_name: (patrickjohncyh_model, patrickjohncyh_processor)
|
18 |
+
}
|
19 |
+
|
20 |
+
|
21 |
+
def gradio_process(model_name, image, text):
|
22 |
+
(model, processor) = model_map[model_name]
|
23 |
+
labels = text.split(", ")
|
24 |
+
print (labels)
|
25 |
+
start = time.time()
|
26 |
+
inputs = processor(text=labels, images=image, return_tensors="pt", padding=True)
|
27 |
+
outputs = model(**inputs)
|
28 |
+
probs = outputs.logits_per_image.softmax(dim=1)[0]
|
29 |
+
end = time.time()
|
30 |
+
time_spent = end - start
|
31 |
+
probs = list(probs)
|
32 |
+
results = []
|
33 |
+
for i in range(len(labels)):
|
34 |
+
results.append(f"{labels[i]} - {probs[i].item():.4f}")
|
35 |
+
result = "\n".join(results)
|
36 |
+
|
37 |
+
return [result, time_spent]
|
38 |
+
|
39 |
+
|
40 |
+
with gr.Blocks() as zero_shot_image_classification_tab:
|
41 |
+
gr.Markdown("# Zero-Shot Image Classification")
|
42 |
+
|
43 |
+
with gr.Row():
|
44 |
+
with gr.Column():
|
45 |
+
# Input components
|
46 |
+
input_image = gr.Image(label="Upload Image", type="pil")
|
47 |
+
input_text = gr.Textbox(label="Labels (comma separated)")
|
48 |
+
model_selector = gr.Dropdown([openai_model_name, patrickjohncyh_model_name],
|
49 |
+
label = "Select Model")
|
50 |
+
|
51 |
+
# Process button
|
52 |
+
process_btn = gr.Button("Classificate")
|
53 |
+
|
54 |
+
with gr.Column():
|
55 |
+
# Output components
|
56 |
+
elapsed_result = gr.Textbox(label="Seconds elapsed", lines=1)
|
57 |
+
output_text = gr.Textbox(label="Classification")
|
58 |
+
|
59 |
+
# Connect the input components to the processing function
|
60 |
+
process_btn.click(
|
61 |
+
fn=gradio_process,
|
62 |
+
inputs=[
|
63 |
+
model_selector,
|
64 |
+
input_image,
|
65 |
+
input_text
|
66 |
+
],
|
67 |
+
outputs=[output_text, elapsed_result]
|
68 |
+
)
|
69 |
+
|
70 |
+
|
71 |
+
with gr.Blocks() as app:
|
72 |
+
gr.TabbedInterface([zero_shot_image_classification_tab], ["Zero-Shot Classification"])
|
73 |
+
|
74 |
+
|
75 |
+
app.launch()
|