|
import streamlit as st |
|
from transformers import pipeline |
|
import tempfile |
|
from pydub import AudioSegment |
|
import numpy as np |
|
|
|
|
|
@st.cache_resource |
|
def load_asr_pipeline(): |
|
asr_pipeline = pipeline("automatic-speech-recognition", model="Yehor/whisper-small-ukrainian") |
|
return asr_pipeline |
|
|
|
st.title("Voice Recognition App using Whisper") |
|
|
|
st.write("Upload an audio file and the Whisper model will transcribe it to text.") |
|
|
|
|
|
asr_pipeline = load_asr_pipeline() |
|
st.write("Model loaded successfully.") |
|
|
|
|
|
uploaded_file = st.file_uploader("Choose an audio file", type=["wav", "mp3", "m4a"]) |
|
|
|
if uploaded_file is not None: |
|
|
|
with tempfile.NamedTemporaryFile(delete=False) as temp_file: |
|
temp_file.write(uploaded_file.read()) |
|
temp_file_path = temp_file.name |
|
|
|
|
|
audio = AudioSegment.from_file(temp_file_path) |
|
temp_wav_path = tempfile.mktemp(suffix=".wav") |
|
audio.export(temp_wav_path, format="wav") |
|
|
|
st.audio(uploaded_file, format="audio/wav") |
|
|
|
st.write("Transcribing audio...") |
|
|
|
|
|
audio_input = AudioSegment.from_file(temp_wav_path).set_frame_rate(16000).set_channels(1) |
|
audio_input = np.array(audio_input.get_array_of_samples(), dtype=np.float32) |
|
|
|
|
|
result = asr_pipeline(audio_input) |
|
|
|
|
|
st.write("Transcription:") |
|
st.write(result['text']) |
|
|