Spaces:
Sleeping
Sleeping
File size: 6,480 Bytes
44622dc 68677f3 6c6129a d7885fe 44622dc 68677f3 44622dc 68677f3 44622dc 68677f3 44622dc aef05c0 44622dc 68677f3 6d06c53 44622dc 68677f3 f03b3f6 68677f3 11e7cd1 68677f3 d7885fe 43aea8d d7885fe 0e62420 6a45dac f03b3f6 68677f3 9609d1c 68677f3 043db6a 68677f3 89d4922 9609d1c d7885fe 68677f3 43aea8d d7885fe db43c7e d7885fe 68677f3 d7885fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: Add a description here."""
import evaluate
import datasets
import numpy as np
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import getpass
import pdb
import os
import torch
from rouge_score import scoring
# TODO: Add BibTeX citation
_CITATION = """\
@InProceedings{huggingface:module,
title = {A great new module},
authors={huggingface, Inc.},
year={2020}
}
"""
# TODO: Add description of the module here
_DESCRIPTION = """\
local coherecence with classifier trained on the shuffle task, window=3 sentences
"""
# TODO: Add description of the arguments of the module here
_KWARGS_DESCRIPTION = """
Calculates how good are predictions given some references, using certain scores
Args:
predictions: list of predictions to score. Each predictions
should be a string with tokens separated by spaces.
references: list of reference for each prediction. Each
reference should be a string with tokens separated by spaces.
Returns:
accuracy: description of the first score,
another_score: description of the second score,
Examples:
Examples should be written in doctest format, and should illustrate how
to use the function.
>>> my_new_module = evaluate.load("my_new_module")
>>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1])
>>> print(results)
{'accuracy': 1.0}
"""
# TODO: Define external resources urls if needed
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"
WINDOW_SIZE = 3
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class ccl_win(evaluate.Measurement):
"""TODO: Short description of my evaluation module."""
def _info(self):
# TODO: Specifies the evaluate.EvaluationModuleInfo object
return evaluate.MeasurementInfo(
# This is the description that will appear on the modules page.
module_type="measurement",
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
# This defines the format of each prediction and reference
features=datasets.Features({
'predictions': datasets.Value('string'),
}),
# Homepage of the module for documentation
homepage="http://module.homepage",
# Additional links to the codebase or references
codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
reference_urls=["http://path.to.reference.url/new_module"]
)
def _download_and_prepare(self, dl_manager):
"""Optional: download external resources useful to compute the scores"""
# TODO: Download external resources if needed
pass
def preprocess_adjacent_window(self,preds):
pred_list = []
lens = []
for pred in preds:
sents = pred.split("\n")
ns = len(sents)
if ns <= WINDOW_SIZE:
pred_list.append(pred)
lens.append(1)
else:
llen = 0
for i in range(0,ns-WINDOW_SIZE+1):
sss = sents[i:i+WINDOW_SIZE]
ss = "\n".join(sss)
pred_list.append(ss)
llen += 1
lens.append(llen)
#
return pred_list,lens
def _compute(self, predictions, dataset="arxiv", batch_size: int = 16, device=None, use_aggregator=True):
"""Returns the scores"""
MODEL_CACHE_DIR = "/home/rcardena/.cache/huggingface/"
BASEDIR = "/gfs/team/nlp/users/rcardena/tools/new_evals/ccl_win"
if getpass.getuser() == "s1987051":
MODEL_CACHE_DIR="/disk/ocean/rcardenas/tools/huggingface/"
elif getpass.getuser() == "rcardena":
MODEL_CACHE_DIR="/gfs/team/nlp/users/rcardena/tools/huggingface/"
if device is not None:
# assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu."
if device == "gpu":
device = "cuda"
else:
device = "cuda" if torch.cuda.is_available() else "cpu"
results = []
sent_lens = [len(x.split("\n")) for x in predictions]
aggregator = None
if use_aggregator:
np.random.seed(42)
aggregator = scoring.BootstrapAggregator()
tokenizer = AutoTokenizer.from_pretrained("roberta-large")
model = AutoModelForSequenceClassification.from_pretrained(os.path.join(BASEDIR,dataset))
model.to(device)
model.eval()
pred_list,len_by_sample = self.preprocess_adjacent_window(predictions)
scores = []
n_preds = len(pred_list)
with torch.no_grad():
for b in range(0,n_preds,batch_size):
strides = [x.lower() for x in pred_list[b:b+batch_size]]
tinput = tokenizer(strides,padding=True,truncation=True,max_length=512,return_tensors="pt")
tinput = {k:v.to(device) for k,v in tinput.items()}
output = model(**tinput)
probs = torch.softmax(output.logits,dim=-1).detach().cpu().numpy()
scores.extend(probs[:,0].tolist())
#
offset = 0
for i,_len in enumerate(len_by_sample):
score = float(np.mean(scores[offset:offset+_len])) if sent_lens[i]>1 else 0.
if use_aggregator:
aggregator.add_scores({"loc_coh_ccl": score})
else:
results.append(score)
offset += _len
#
outres = {}
if use_aggregator:
res = aggregator.aggregate()
for k in res: outres[k] = res[k].mid
else:
outres = {"loc_coh_ccl": results}
return outres |