Update app.py
Browse files
app.py
CHANGED
@@ -1,82 +1,31 @@
|
|
1 |
import gradio as gr
|
2 |
-
from TTS.api import TTS
|
3 |
|
4 |
-
tts = TTS(model_name="tts_models/multilingual/multi-dataset/your_tts", progress_bar=False, gpu=False)
|
5 |
|
6 |
-
def predict(text):
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
demo = gr.Interface(
|
12 |
-
fn=predict,
|
13 |
-
inputs='text',
|
14 |
-
outputs='audio'
|
15 |
-
)
|
16 |
-
|
17 |
-
|
18 |
-
demo.launch()
|
19 |
-
|
20 |
-
|
21 |
-
# import requests
|
22 |
-
# import time
|
23 |
-
# import tempfile
|
24 |
-
# import os
|
25 |
-
|
26 |
-
# token = os.environ['apikey']
|
27 |
-
# #discord_id = os.environ['discord-id']
|
28 |
-
# API_HOST = "https://labs-proxy.voicemod.net/"
|
29 |
-
|
30 |
-
# def download_file(url):
|
31 |
-
# response = requests.get(url)
|
32 |
-
# if response.status_code == 200:
|
33 |
-
# with tempfile.NamedTemporaryFile(delete=False) as tmp_file:
|
34 |
-
# tmp_file.write(response.content)
|
35 |
-
# tmp_file.flush()
|
36 |
-
# return tmp_file.name
|
37 |
-
# else:
|
38 |
-
# print("Error: Unable to download file")
|
39 |
-
|
40 |
-
# def tts(text):
|
41 |
-
# url = API_HOST + "api/v1/tts/create"
|
42 |
-
# payload = {
|
43 |
-
# "text": text[:200] if len(text) > 200 else text,
|
44 |
-
# "voiceId": "6926ecc5-ff5e-47c6-912b-3ffdb880bf56" # Narrator
|
45 |
-
# }
|
46 |
-
# headers = {
|
47 |
-
# 'x-api-key': token,
|
48 |
-
# }
|
49 |
-
# response = requests.request("POST", url, headers=headers, json=payload)
|
50 |
-
# jsonResp = response.json()
|
51 |
-
|
52 |
-
# return gr.make_waveform(download_file(jsonResp['audioUrl']))
|
53 |
|
54 |
# demo = gr.Interface(
|
55 |
-
# fn=
|
56 |
-
# inputs=
|
57 |
-
# outputs=
|
58 |
# )
|
59 |
|
60 |
-
# demo.launch()
|
61 |
|
62 |
-
#
|
63 |
-
# import os
|
64 |
-
# #from pymongo import MongoClient
|
65 |
|
66 |
-
# api_key = os.environ.get("OPENAI_API_KEY")
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
# return transcript['text']
|
72 |
-
|
73 |
|
74 |
-
|
75 |
-
# iface = gr.Interface(
|
76 |
-
# fn=transcribe_audio,
|
77 |
-
# inputs= gr.Audio(source="upload", type="filepath"),
|
78 |
-
# outputs="text",
|
79 |
-
# )
|
80 |
|
81 |
|
82 |
-
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
# from TTS.api import TTS
|
3 |
|
4 |
+
# tts = TTS(model_name="tts_models/multilingual/multi-dataset/your_tts", progress_bar=False, gpu=False)
|
5 |
|
6 |
+
# def predict(text):
|
7 |
+
# file_path = "output.wav"
|
8 |
+
# tts.tts_to_file(text, speaker=tts.speakers[0], language="en", file_path=file_path)
|
9 |
+
# return file_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
# demo = gr.Interface(
|
12 |
+
# fn=predict,
|
13 |
+
# inputs='text',
|
14 |
+
# outputs='audio'
|
15 |
# )
|
16 |
|
|
|
17 |
|
18 |
+
# demo.launch()
|
|
|
|
|
19 |
|
|
|
20 |
|
21 |
+
import librosa
|
22 |
+
import numpy as np
|
23 |
+
import torch
|
|
|
|
|
24 |
|
25 |
+
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
|
28 |
+
checkpoint = "microsoft/speecht5_tts"
|
29 |
+
processor = SpeechT5Processor.from_pretrained(checkpoint)
|
30 |
+
model = SpeechT5ForTextToSpeech.from_pretrained(checkpoint)
|
31 |
+
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|