Spaces:
Sleeping
Sleeping
Commit
·
ce4167f
1
Parent(s):
9793cb6
Add requirements
Browse files- README.md +122 -14
- app.py +210 -0
- requirements.txt +9 -0
README.md
CHANGED
@@ -1,14 +1,122 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Neural Machine Translation for English-Hindi
|
2 |
+
|
3 |
+
This project implements a Neural Machine Translation system for English-Hindi translation using the MarianMT model fine-tuned on 100k split of Samanantar, with a user-friendly Gradio interface.
|
4 |
+
|
5 |
+

|
6 |
+
|
7 |
+
## Features
|
8 |
+
|
9 |
+
- Unidirectional translation between English and Hindi
|
10 |
+
- User-friendly web interface built with Gradio
|
11 |
+
- Example translations included
|
12 |
+
- Built on Helsinki-NLP's MarianMT model
|
13 |
+
|
14 |
+
## Installation
|
15 |
+
|
16 |
+
### Local Setup with Virtual Environment
|
17 |
+
|
18 |
+
1. Clone the repository:
|
19 |
+
```bash
|
20 |
+
git clone https://github.com/yourusername/NLPA_Assignment_2_Group_54.git
|
21 |
+
cd NLPA_Assignment_2_Group_54
|
22 |
+
```
|
23 |
+
|
24 |
+
2. Create and activate a virtual environment:
|
25 |
+
```bash
|
26 |
+
python -m venv venv
|
27 |
+
source venv/bin/activate # On Windows, use: venv\Scripts\activate
|
28 |
+
```
|
29 |
+
|
30 |
+
3. Install the required packages:
|
31 |
+
```bash
|
32 |
+
pip install -r requirements.txt
|
33 |
+
```
|
34 |
+
|
35 |
+
## Usage
|
36 |
+
|
37 |
+
1. Make sure your virtual environment is activated
|
38 |
+
2. Run the UI:
|
39 |
+
```bash
|
40 |
+
python nmt_ui.py
|
41 |
+
```
|
42 |
+
3. Open your browser and navigate to `http://localhost:7860`
|
43 |
+
|
44 |
+
## Supported Language Pairs
|
45 |
+
|
46 |
+
- English -> Hindi (using rooftopcoder/opus-mt-en-hi-samanantar-100k model)
|
47 |
+
|
48 |
+
## Training the Model
|
49 |
+
|
50 |
+
The `train.py` script is used to train the MarianMT model on the Samanantar dataset. The script performs the following steps:
|
51 |
+
- Loads the Samanantar dataset (English-Hindi subset).
|
52 |
+
- Splits the dataset into training and validation sets.
|
53 |
+
- Tokenizes the dataset.
|
54 |
+
- Sets up training arguments optimized for GPU.
|
55 |
+
- Trains the model using the Hugging Face `Trainer` class.
|
56 |
+
- Saves the trained model to the specified directory.
|
57 |
+
- Uploads the trained model to the Hugging Face Hub.
|
58 |
+
|
59 |
+
To train the model, run:
|
60 |
+
```bash
|
61 |
+
python train.py
|
62 |
+
```
|
63 |
+
|
64 |
+
## Testing the Model
|
65 |
+
|
66 |
+
The `model_test.py` script is used to test the trained MarianMT model. The script performs the following steps:
|
67 |
+
- Loads the trained model and tokenizer from the Hugging Face Hub.
|
68 |
+
- Translates a sample input text from English to Hindi.
|
69 |
+
- Prints the translated text.
|
70 |
+
|
71 |
+
To test the model, run:
|
72 |
+
```bash
|
73 |
+
python model_test.py
|
74 |
+
```
|
75 |
+
|
76 |
+
## User Interface
|
77 |
+
|
78 |
+
The `nmt_ui.py` script provides a Gradio-based user interface for translating text between English and Hindi. The interface includes options for transliteration of Romanized Hindi text to Devanagari script.
|
79 |
+
|
80 |
+
To launch the interface, run:
|
81 |
+
```bash
|
82 |
+
python nmt_ui.py
|
83 |
+
```
|
84 |
+
|
85 |
+
## Model Information
|
86 |
+
|
87 |
+
This project uses the MarianMT model from Hugging Face Transformers.
|
88 |
+
|
89 |
+
### Notes:
|
90 |
+
- The model supports English-Hindi translation.
|
91 |
+
- Based on the Helsinki-NLP/opus-mt-en-hi model.
|
92 |
+
- Optimized for English -> Hindi translation pairs.
|
93 |
+
- Includes transliteration support for Romanized Hindi text.
|
94 |
+
|
95 |
+
### Supported Features:
|
96 |
+
- English -> Hindi translation.
|
97 |
+
- Romanized Hindi -> Devanagari Hindi transliteration.
|
98 |
+
|
99 |
+
### Examples of Transliteration:
|
100 |
+
- "namaste" → "नमस्ते"
|
101 |
+
- "aap kaise ho" → "आप कैसे हो"
|
102 |
+
- "mera naam" → "मेरा नाम"
|
103 |
+
|
104 |
+
## Project Structure
|
105 |
+
|
106 |
+
```
|
107 |
+
NLPA_Assignment_2_Group_54/
|
108 |
+
├── nmt_ui.py # Main application file with Gradio interface
|
109 |
+
├── requirements.txt # Python dependencies
|
110 |
+
└── README.md # Project documentation
|
111 |
+
```
|
112 |
+
|
113 |
+
## License
|
114 |
+
|
115 |
+
MIT
|
116 |
+
|
117 |
+
## Group Members
|
118 |
+
|
119 |
+
- Shubhra J Gadhwala: 2023aa05750
|
120 |
+
- Sandeep Kumar Yadav: 2023ab05047
|
121 |
+
- Ravi Krishna Mayura: 2023ab05157
|
122 |
+
- Satheesh Kumar G: 2023ab05041
|
app.py
ADDED
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from huggingface_hub import HfFolder
|
3 |
+
from transformers import MarianMTModel, MarianTokenizer
|
4 |
+
from indic_transliteration import sanscript
|
5 |
+
from indic_transliteration.sanscript import transliterate
|
6 |
+
import torch # Add this import at the top with other imports
|
7 |
+
|
8 |
+
# Global variables to store models and tokenizers
|
9 |
+
models = {}
|
10 |
+
tokenizers = {}
|
11 |
+
token = HfFolder.get_token()
|
12 |
+
|
13 |
+
# Model configurations
|
14 |
+
MODEL_CONFIGS = {
|
15 |
+
"en-hi": {
|
16 |
+
"model_path": "rooftopcoder/opus-mt-en-hi-samanantar-finetuned",
|
17 |
+
"name": "English to Hindi"
|
18 |
+
},
|
19 |
+
"hi-en": {
|
20 |
+
"model_path": "rooftopcoder/opus-mt-hi-en-samanantar-finetuned",
|
21 |
+
"name": "Hindi to English"
|
22 |
+
},
|
23 |
+
"en-mr": {
|
24 |
+
"model_path": "rooftopcoder/opus-mt-en-mr-samanantar-finetuned",
|
25 |
+
"name": "English to Marathi"
|
26 |
+
},
|
27 |
+
"mr-en": {
|
28 |
+
"model_path": "rooftopcoder/opus-mt-mr-en-samanantar-finetuned",
|
29 |
+
"name": "Marathi to English"
|
30 |
+
}
|
31 |
+
}
|
32 |
+
|
33 |
+
# Update language codes dictionary
|
34 |
+
language_codes = {
|
35 |
+
"English": "en",
|
36 |
+
"Hindi": "hi",
|
37 |
+
"Marathi": "mr"
|
38 |
+
}
|
39 |
+
|
40 |
+
# Reverse dictionary for display purposes
|
41 |
+
language_names = {v: k for k, v in language_codes.items()}
|
42 |
+
|
43 |
+
def load_models():
|
44 |
+
try:
|
45 |
+
print("Loading models from local storage...")
|
46 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
47 |
+
print(f"Using device: {device}")
|
48 |
+
|
49 |
+
for direction, config in MODEL_CONFIGS.items():
|
50 |
+
print(f"Loading {config['name']} model...")
|
51 |
+
tokenizers[direction] = MarianTokenizer.from_pretrained(config["model_path"], token=token)
|
52 |
+
models[direction] = MarianMTModel.from_pretrained(config["model_path"], token=token).to(device)
|
53 |
+
|
54 |
+
print("All models loaded successfully!")
|
55 |
+
return True
|
56 |
+
except Exception as e:
|
57 |
+
print(f"Error loading models: {e}")
|
58 |
+
return False
|
59 |
+
|
60 |
+
# Function to perform transliteration from English to Hindi
|
61 |
+
def transliterate_text(text, from_scheme=sanscript.ITRANS, to_scheme=sanscript.DEVANAGARI):
|
62 |
+
"""
|
63 |
+
Transliterates text from one script to another
|
64 |
+
Default is from ITRANS (Roman) to Devanagari (Hindi)
|
65 |
+
"""
|
66 |
+
try:
|
67 |
+
return transliterate(text, from_scheme, to_scheme)
|
68 |
+
except Exception as e:
|
69 |
+
print(f"Transliteration error: {e}")
|
70 |
+
return text
|
71 |
+
|
72 |
+
# Function to perform translation with MarianMT
|
73 |
+
def translate(input_text, source_lang, target_lang):
|
74 |
+
"""
|
75 |
+
Translates text using MarianMT models
|
76 |
+
"""
|
77 |
+
direction = f"{source_lang}-{target_lang}"
|
78 |
+
if direction not in models or direction not in tokenizers:
|
79 |
+
return "Error: Unsupported language pair"
|
80 |
+
|
81 |
+
if not input_text.strip():
|
82 |
+
return "Error: Please enter some text to translate."
|
83 |
+
|
84 |
+
try:
|
85 |
+
device = next(models[direction].parameters()).device
|
86 |
+
tokens = tokenizers[direction](input_text, return_tensors="pt", padding=True, truncation=True)
|
87 |
+
tokens = {k: v.to(device) for k, v in tokens.items()}
|
88 |
+
|
89 |
+
translated = models[direction].generate(**tokens)
|
90 |
+
translated = translated.cpu()
|
91 |
+
output = tokenizers[direction].batch_decode(translated, skip_special_tokens=True)
|
92 |
+
return output[0]
|
93 |
+
except Exception as e:
|
94 |
+
print(f"Translation error: {e}")
|
95 |
+
return f"Error during translation: {str(e)}"
|
96 |
+
|
97 |
+
# Helper function for handling the UI translation process
|
98 |
+
def perform_translation(input_text, source_lang, target_lang):
|
99 |
+
"""Wrapper function for the Gradio interface"""
|
100 |
+
source_code = language_codes[source_lang]
|
101 |
+
target_code = language_codes[target_lang]
|
102 |
+
|
103 |
+
# Handle transliteration for Hindi and Marathi
|
104 |
+
if source_code == "en" and target_code in ["hi", "mr"]:
|
105 |
+
common_indic_words = {
|
106 |
+
"hi": ["namaste", "dhanyavad", "kaise", "hai", "aap", "tum", "main"],
|
107 |
+
"mr": ["namaskar", "dhanyawad", "kase", "ahe", "tumhi", "mi"]
|
108 |
+
}
|
109 |
+
|
110 |
+
words = input_text.lower().split()
|
111 |
+
if any(word in common_indic_words.get(target_code, []) for word in words):
|
112 |
+
transliterated = transliterate_text(input_text)
|
113 |
+
if transliterated != input_text:
|
114 |
+
translation = translate(input_text, source_code, target_code)
|
115 |
+
return f"Transliterated: {transliterated}\n\nTranslated: {translation}"
|
116 |
+
|
117 |
+
return translate(input_text, source_code, target_code)
|
118 |
+
|
119 |
+
# Create Gradio interface
|
120 |
+
def create_interface():
|
121 |
+
with gr.Blocks(title="Neural Machine Translation - Indian Languages") as demo:
|
122 |
+
gr.Markdown("# Neural Machine Translation for Indian Languages")
|
123 |
+
gr.Markdown("Translate between English, Hindi, and Marathi using MarianMT models")
|
124 |
+
|
125 |
+
with gr.Row():
|
126 |
+
with gr.Column():
|
127 |
+
source_lang = gr.Dropdown(
|
128 |
+
choices=list(language_codes.keys()),
|
129 |
+
label="Source Language",
|
130 |
+
value="English"
|
131 |
+
)
|
132 |
+
input_text = gr.Textbox(
|
133 |
+
lines=5,
|
134 |
+
placeholder="Enter text to translate...",
|
135 |
+
label="Input Text"
|
136 |
+
)
|
137 |
+
|
138 |
+
with gr.Column():
|
139 |
+
target_lang = gr.Dropdown(
|
140 |
+
choices=list(language_codes.keys()),
|
141 |
+
label="Target Language",
|
142 |
+
value="Hindi"
|
143 |
+
)
|
144 |
+
output_text = gr.Textbox(
|
145 |
+
lines=5,
|
146 |
+
label="Translated Text",
|
147 |
+
placeholder="Translation will appear here..."
|
148 |
+
)
|
149 |
+
|
150 |
+
translate_btn = gr.Button("Translate", variant="primary")
|
151 |
+
transliterate_btn = gr.Button("Transliterate Only", variant="secondary")
|
152 |
+
|
153 |
+
# Event handlers
|
154 |
+
translate_btn.click(
|
155 |
+
fn=perform_translation,
|
156 |
+
inputs=[input_text, source_lang, target_lang],
|
157 |
+
outputs=[output_text],
|
158 |
+
api_name="translate"
|
159 |
+
)
|
160 |
+
|
161 |
+
# Direct transliteration handler (new)
|
162 |
+
def direct_transliterate(text):
|
163 |
+
if not text.strip():
|
164 |
+
return "Please enter text to transliterate"
|
165 |
+
return transliterate_text(text)
|
166 |
+
|
167 |
+
transliterate_btn.click(
|
168 |
+
fn=direct_transliterate,
|
169 |
+
inputs=[input_text],
|
170 |
+
outputs=[output_text],
|
171 |
+
api_name="transliterate"
|
172 |
+
)
|
173 |
+
|
174 |
+
# Examples for all language pairs
|
175 |
+
gr.Examples(
|
176 |
+
examples=[
|
177 |
+
["Hello, how are you?", "English", "Hindi"],
|
178 |
+
["नमस्ते, आप कैसे हैं?", "Hindi", "English"],
|
179 |
+
["Hello, how are you?", "English", "Marathi"],
|
180 |
+
["नमस्कार, तुम्ही कसे आहात?", "Marathi", "English"],
|
181 |
+
],
|
182 |
+
inputs=[input_text, source_lang, target_lang],
|
183 |
+
fn=perform_translation,
|
184 |
+
outputs=output_text,
|
185 |
+
cache_examples=True
|
186 |
+
)
|
187 |
+
|
188 |
+
gr.Markdown("""
|
189 |
+
## Model Information
|
190 |
+
|
191 |
+
This demo uses fine-tuned MarianMT models for translation between:
|
192 |
+
- English ↔️ Hindi
|
193 |
+
- English ↔️ Marathi
|
194 |
+
|
195 |
+
### Features:
|
196 |
+
- Bidirectional translation support
|
197 |
+
- Transliteration support for romanized Indic text
|
198 |
+
- Optimized models for each language pair
|
199 |
+
""")
|
200 |
+
|
201 |
+
return demo
|
202 |
+
|
203 |
+
# Launch the interface
|
204 |
+
if __name__ == "__main__":
|
205 |
+
# Load all models before launching the interface
|
206 |
+
if load_models():
|
207 |
+
demo = create_interface()
|
208 |
+
demo.launch(share=False)
|
209 |
+
else:
|
210 |
+
print("Failed to load models. Please check the model paths and try again.")
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
transformers[sentencepiece]
|
3 |
+
torch
|
4 |
+
sacremoses
|
5 |
+
indic-transliteration
|
6 |
+
datasets
|
7 |
+
accelerate>=0.26.0
|
8 |
+
evaluate
|
9 |
+
sacrebleu
|