File size: 4,082 Bytes
2bcc178 e3fbad5 2bcc178 39acce6 2bcc178 39acce6 2bcc178 39acce6 2bcc178 39acce6 2bcc178 e3fbad5 2bcc178 94c0e24 2bcc178 81a28c0 94c0e24 81a28c0 f89ca16 81a28c0 7ebe974 94c0e24 81a28c0 94c0e24 81a28c0 2bcc178 94c0e24 2bcc178 4e10dac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
from huggingface_hub import InferenceClient
import nltk
import re
import requests
import os
api_key = os.getenv("HF_KEY")
nltk.download('punkt')
nltk.download('punkt_tab')
nltk.download('averaged_perceptron_tagger')
client = InferenceClient(api_key=api_key)
def extract_product_info(text):
print(f'Extract function called!')
# Initialize result dictionary
result = {"brand": None, "model": None, "description": None, "price": None}
# Extract price separately using regex (to avoid confusion with brand name)
price_match = re.search(r'\$\s?\d{1,3}(?:,\d{3})*(?:\.\d{2})?', text)
print(f'price_match:{price_match}')
if price_match:
result["price"] = price_match.group().replace("$", "").replace(",", "").strip()
# Remove the price part from the text to prevent it from being included in the brand/model extraction
text = text.replace(price_match.group(), "").strip()
print(f'text:{text}')
# Tokenize the remaining text and tag parts of speech
tokens = nltk.word_tokenize(text)
print(f'tokens are:{tokens}')
pos_tags = nltk.pos_tag(tokens)
print(tokens, pos_tags)
# Extract brand and model (Proper Nouns + Alphanumeric patterns)
brand_parts = []
model_parts = []
description_parts = []
# First part: Extract brand and model info
for word, tag in pos_tags:
if tag == 'NNP' or re.match(r'[A-Za-z0-9-]+', word):
if len(brand_parts) == 0: # Assume the first proper noun is the brand
brand_parts.append(word)
else: # Model number tends to follow the brand
model_parts.append(word)
else:
description_parts.append(word)
# Assign brand and model to result dictionary
if brand_parts:
result["brand"] = " ".join(brand_parts)
if model_parts:
result["model"] = " ".join(model_parts)
# Combine the remaining parts as description
result["description"] = " ".join(description_parts)
print(f'extract function returned:\n{result}')
return result
def extract_info(text):
API_URL = "https://api-inference.huggingface.co/models/google/flan-t5-large"
headers = {"Authorization": f"Bearer {api_key}"}
payload = {"inputs": f"From the given text, extract brand name, model number, description about it, and its average price in today's market. Give me back a python dictionary with keys as brand_name, model_number, desc, price. The text is {text}.",}
response = requests.post(API_URL, headers=headers, json=payload)
print('GOOGLEE LLM OUTPUTTTTTTT\n\n',response )
output = response.json()
print(output)
def get_name(url, object):
messages = [
{
"role": "user",
"content": [
{
"type": "text",
"text": f"Is this a {object}?. Can you guess what it is and give me the closest brand it resembles to? or a model number? And give me its average price in today's market in USD. In output, give me its normal name, model name, model number and price. separated by commas. No description is needed."
},
{
"type": "image_url",
"image_url": {
"url": url
}
}
]
}
]
completion = client.chat.completions.create(
model="meta-llama/Llama-3.2-11B-Vision-Instruct",
messages=messages,
max_tokens=500
)
print(f'\n\nNow output of LLM:\n')
llm_result = completion.choices[0].message['content']
print(llm_result)
# print(f'\n\nThat is the output')
print(f"Extracting from the output now, function calling")
result = extract_product_info(llm_result)
print(f'\n\nResult brand and price:{result}')
print(f'\n\nThat is the output')
# result2 = extract_info(llm_result)
# print(f'\n\nFrom Google llm:{result2}')
return result
# url = "https://i.ibb.co/mNYvqDL/crop_39.jpg"
# object="fridge"
# get_name(url, object) |