tesseract error handling
Browse files
model.py
CHANGED
@@ -1,172 +1,185 @@
|
|
1 |
-
import torch
|
2 |
-
from pathlib import Path
|
3 |
-
from transformers import CLIPProcessor, CLIPModel
|
4 |
-
from PIL import Image, ImageDraw
|
5 |
-
import pytesseract
|
6 |
-
import requests
|
7 |
-
import os
|
8 |
-
from llm import inference, upload_image
|
9 |
-
|
10 |
-
import re
|
11 |
-
|
12 |
-
|
13 |
-
cropped_images_dir = "cropped_images"
|
14 |
-
os.makedirs(cropped_images_dir, exist_ok=True)
|
15 |
-
|
16 |
-
# Load YOLO model
|
17 |
-
class YOLOModel:
|
18 |
-
def __init__(self, model_path="yolov5s.pt"):
|
19 |
-
"""
|
20 |
-
Initialize the YOLO model. Downloads YOLOv5 pretrained model if not available.
|
21 |
-
"""
|
22 |
-
torch.hub._validate_not_a_forked_repo=lambda a,b,c: True
|
23 |
-
self.model = torch.hub.load("ultralytics/yolov5", "custom", path=model_path, force_reload=True)
|
24 |
-
# self.model2 = YOLOv10.from_pretrained("Ultralytics/Yolov8")
|
25 |
-
# print(f'YOLO Model:\n\n{self.model}')
|
26 |
-
# self.clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
27 |
-
|
28 |
-
# # print(f'CLIP Model:\n\n{self.clip_model}')
|
29 |
-
# self.clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
30 |
-
# self.category_brands = {
|
31 |
-
# "electronics": ["Samsung", "Apple", "Sony", "LG", "Panasonic"],
|
32 |
-
# "furniture": ["Ikea", "Ashley", "La-Z-Boy", "Wayfair", "West Elm"],
|
33 |
-
# "appliances": ["Whirlpool", "GE", "Samsung", "LG", "Bosch"],
|
34 |
-
# "vehicles": ["Tesla", "Toyota", "Ford", "Honda", "Chevrolet"],
|
35 |
-
# "chair": ["Ikea", "Ashley", "Wayfair", "La-Z-Boy", "Herman Miller"],
|
36 |
-
# "microwave": ["Samsung", "Panasonic", "Sharp", "LG", "Whirlpool"],
|
37 |
-
# "table": ["Ikea", "Wayfair", "Ashley", "CB2", "West Elm"],
|
38 |
-
# "oven": ["Whirlpool", "GE", "Samsung", "Bosch", "LG"],
|
39 |
-
# "potted plant": ["The Sill", "PlantVine", "Lowe's", "Home Depot", "UrbanStems"],
|
40 |
-
# "couch": ["Ikea", "Ashley", "Wayfair", "La-Z-Boy", "CushionCo"],
|
41 |
-
# "cow": ["Angus", "Hereford", "Jersey", "Holstein", "Charolais"],
|
42 |
-
# "bed": ["Tempur-Pedic", "Ikea", "Sealy", "Serta", "Sleep Number"],
|
43 |
-
# "tv": ["Samsung", "LG", "Sony", "Vizio", "TCL"],
|
44 |
-
# "bin": ["Rubbermaid", "Sterilite", "Hefty", "Glad", "Simplehuman"],
|
45 |
-
# "refrigerator": ["Whirlpool", "GE", "Samsung", "LG", "Bosch"],
|
46 |
-
# "laptop": ["Dell", "HP", "Apple", "Lenovo", "Asus"],
|
47 |
-
# "smartphone": ["Apple", "Samsung", "Google", "OnePlus", "Huawei"],
|
48 |
-
# "camera": ["Canon", "Nikon", "Sony", "Fujifilm", "Panasonic"],
|
49 |
-
# "toaster": ["Breville", "Cuisinart", "Black+Decker", "Hamilton Beach", "Oster"],
|
50 |
-
# "fan": ["Dyson", "Honeywell", "Lasko", "Vornado", "Bionaire"],
|
51 |
-
# "vacuum cleaner": ["Dyson", "Shark", "Roomba", "Hoover", "Bissell"]
|
52 |
-
# }
|
53 |
-
|
54 |
-
|
55 |
-
def predict_clip(self, image, brand_names):
|
56 |
-
"""
|
57 |
-
Predict the most probable brand using CLIP.
|
58 |
-
"""
|
59 |
-
inputs = self.clip_processor(
|
60 |
-
text=brand_names,
|
61 |
-
images=image,
|
62 |
-
return_tensors="pt",
|
63 |
-
padding=True
|
64 |
-
)
|
65 |
-
# print(f'Inputs to clip processor:{inputs}')
|
66 |
-
outputs = self.clip_model(**inputs)
|
67 |
-
logits_per_image = outputs.logits_per_image
|
68 |
-
probs = logits_per_image.softmax(dim=1) # Convert logits to probabilities
|
69 |
-
best_idx = probs.argmax().item()
|
70 |
-
return brand_names[best_idx], probs[0, best_idx].item()
|
71 |
-
|
72 |
-
|
73 |
-
def predict_text(self, image):
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
#
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
''
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
#
|
131 |
-
|
132 |
-
|
133 |
-
(
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
"
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
|
|
|
1 |
+
import torch
|
2 |
+
from pathlib import Path
|
3 |
+
from transformers import CLIPProcessor, CLIPModel
|
4 |
+
from PIL import Image, ImageDraw
|
5 |
+
import pytesseract
|
6 |
+
import requests
|
7 |
+
import os
|
8 |
+
from llm import inference, upload_image
|
9 |
+
|
10 |
+
import re
|
11 |
+
|
12 |
+
|
13 |
+
cropped_images_dir = "cropped_images"
|
14 |
+
os.makedirs(cropped_images_dir, exist_ok=True)
|
15 |
+
|
16 |
+
# Load YOLO model
|
17 |
+
class YOLOModel:
|
18 |
+
def __init__(self, model_path="yolov5s.pt"):
|
19 |
+
"""
|
20 |
+
Initialize the YOLO model. Downloads YOLOv5 pretrained model if not available.
|
21 |
+
"""
|
22 |
+
torch.hub._validate_not_a_forked_repo=lambda a,b,c: True
|
23 |
+
self.model = torch.hub.load("ultralytics/yolov5", "custom", path=model_path, force_reload=True)
|
24 |
+
# self.model2 = YOLOv10.from_pretrained("Ultralytics/Yolov8")
|
25 |
+
# print(f'YOLO Model:\n\n{self.model}')
|
26 |
+
# self.clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
27 |
+
|
28 |
+
# # print(f'CLIP Model:\n\n{self.clip_model}')
|
29 |
+
# self.clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
30 |
+
# self.category_brands = {
|
31 |
+
# "electronics": ["Samsung", "Apple", "Sony", "LG", "Panasonic"],
|
32 |
+
# "furniture": ["Ikea", "Ashley", "La-Z-Boy", "Wayfair", "West Elm"],
|
33 |
+
# "appliances": ["Whirlpool", "GE", "Samsung", "LG", "Bosch"],
|
34 |
+
# "vehicles": ["Tesla", "Toyota", "Ford", "Honda", "Chevrolet"],
|
35 |
+
# "chair": ["Ikea", "Ashley", "Wayfair", "La-Z-Boy", "Herman Miller"],
|
36 |
+
# "microwave": ["Samsung", "Panasonic", "Sharp", "LG", "Whirlpool"],
|
37 |
+
# "table": ["Ikea", "Wayfair", "Ashley", "CB2", "West Elm"],
|
38 |
+
# "oven": ["Whirlpool", "GE", "Samsung", "Bosch", "LG"],
|
39 |
+
# "potted plant": ["The Sill", "PlantVine", "Lowe's", "Home Depot", "UrbanStems"],
|
40 |
+
# "couch": ["Ikea", "Ashley", "Wayfair", "La-Z-Boy", "CushionCo"],
|
41 |
+
# "cow": ["Angus", "Hereford", "Jersey", "Holstein", "Charolais"],
|
42 |
+
# "bed": ["Tempur-Pedic", "Ikea", "Sealy", "Serta", "Sleep Number"],
|
43 |
+
# "tv": ["Samsung", "LG", "Sony", "Vizio", "TCL"],
|
44 |
+
# "bin": ["Rubbermaid", "Sterilite", "Hefty", "Glad", "Simplehuman"],
|
45 |
+
# "refrigerator": ["Whirlpool", "GE", "Samsung", "LG", "Bosch"],
|
46 |
+
# "laptop": ["Dell", "HP", "Apple", "Lenovo", "Asus"],
|
47 |
+
# "smartphone": ["Apple", "Samsung", "Google", "OnePlus", "Huawei"],
|
48 |
+
# "camera": ["Canon", "Nikon", "Sony", "Fujifilm", "Panasonic"],
|
49 |
+
# "toaster": ["Breville", "Cuisinart", "Black+Decker", "Hamilton Beach", "Oster"],
|
50 |
+
# "fan": ["Dyson", "Honeywell", "Lasko", "Vornado", "Bionaire"],
|
51 |
+
# "vacuum cleaner": ["Dyson", "Shark", "Roomba", "Hoover", "Bissell"]
|
52 |
+
# }
|
53 |
+
|
54 |
+
|
55 |
+
def predict_clip(self, image, brand_names):
|
56 |
+
"""
|
57 |
+
Predict the most probable brand using CLIP.
|
58 |
+
"""
|
59 |
+
inputs = self.clip_processor(
|
60 |
+
text=brand_names,
|
61 |
+
images=image,
|
62 |
+
return_tensors="pt",
|
63 |
+
padding=True
|
64 |
+
)
|
65 |
+
# print(f'Inputs to clip processor:{inputs}')
|
66 |
+
outputs = self.clip_model(**inputs)
|
67 |
+
logits_per_image = outputs.logits_per_image
|
68 |
+
probs = logits_per_image.softmax(dim=1) # Convert logits to probabilities
|
69 |
+
best_idx = probs.argmax().item()
|
70 |
+
return brand_names[best_idx], probs[0, best_idx].item()
|
71 |
+
|
72 |
+
|
73 |
+
def predict_text(self, image):
|
74 |
+
try:
|
75 |
+
# Convert image to grayscale
|
76 |
+
grayscale = image.convert('L')
|
77 |
+
|
78 |
+
# Perform OCR using pytesseract
|
79 |
+
text = pytesseract.image_to_string(grayscale)
|
80 |
+
|
81 |
+
# Return the stripped text if successful
|
82 |
+
return text.strip()
|
83 |
+
except Exception as e:
|
84 |
+
# Log the error for debugging purposes
|
85 |
+
print(f"Error during text prediction: {e}")
|
86 |
+
|
87 |
+
# Return an empty string if OCR fails
|
88 |
+
return ""
|
89 |
+
|
90 |
+
|
91 |
+
|
92 |
+
def predict(self, image_path):
|
93 |
+
"""
|
94 |
+
Run YOLO inference on an image.
|
95 |
+
|
96 |
+
:param image_path: Path to the input image
|
97 |
+
:return: List of predictions with labels and bounding boxes
|
98 |
+
"""
|
99 |
+
results = self.model(image_path)
|
100 |
+
image = Image.open(image_path).convert("RGB")
|
101 |
+
draw = ImageDraw.Draw(image)
|
102 |
+
predictions = results.pandas().xyxy[0] # Get predictions as pandas DataFrame
|
103 |
+
print(f'YOLO predictions:\n\n{predictions}')
|
104 |
+
output = []
|
105 |
+
for idx, row in predictions.iterrows():
|
106 |
+
category = row['name']
|
107 |
+
confidence = row['confidence']
|
108 |
+
bbox = [row["xmin"], row["ymin"], row["xmax"], row["ymax"]]
|
109 |
+
|
110 |
+
# Crop the detected region
|
111 |
+
cropped_image = image.crop((bbox[0], bbox[1], bbox[2], bbox[3]))
|
112 |
+
cropped_image_path = os.path.join(cropped_images_dir, f"crop_{idx}.jpg")
|
113 |
+
cropped_image.save(cropped_image_path, "JPEG")
|
114 |
+
|
115 |
+
# uploading to cloud for getting URL to pass into LLM
|
116 |
+
print(f'Uploading now to image url')
|
117 |
+
image_url = upload_image.upload_image_to_imgbb(cropped_image_path)
|
118 |
+
print(f'Image URL received as{image_url}')
|
119 |
+
# inferencing llm for possible brands
|
120 |
+
result_llms = inference.get_name(image_url, category)
|
121 |
+
# possible_brands_llm = re.findall(r"-\s*(.+)", possible_brands_mixed)
|
122 |
+
|
123 |
+
# if len(possible_brands_llm)>0:
|
124 |
+
# predicted_brand, clip_confidence = self.predict_clip(cropped_image, possible_brands_llm)
|
125 |
+
# else:
|
126 |
+
# predicted_brand, clip_confidence = "Unknown", 0.0
|
127 |
+
|
128 |
+
|
129 |
+
'''
|
130 |
+
# Match category to possible brands
|
131 |
+
if category in self.category_brands:
|
132 |
+
possible_brands = self.category_brands[category]
|
133 |
+
print(f'Predicting with CLIP:\n\n')
|
134 |
+
predicted_brand, clip_confidence = self.predict_clip(cropped_image, possible_brands)
|
135 |
+
else:
|
136 |
+
predicted_brand, clip_confidence = "Unknown", 0.0
|
137 |
+
'''
|
138 |
+
|
139 |
+
|
140 |
+
detected_text = self.predict_text(cropped_image)
|
141 |
+
print(f'Details:{detected_text}')
|
142 |
+
print(f'Predicted brand: {result_llms["model"]}')
|
143 |
+
# Draw bounding box and label on the image
|
144 |
+
draw.rectangle(bbox, outline="red", width=3)
|
145 |
+
draw.text(
|
146 |
+
(bbox[0], bbox[1] - 10),
|
147 |
+
f'{result_llms["brand"]})',
|
148 |
+
fill="red"
|
149 |
+
)
|
150 |
+
|
151 |
+
# Append result
|
152 |
+
output.append({
|
153 |
+
"category": category,
|
154 |
+
"bbox": bbox,
|
155 |
+
"confidence": confidence,
|
156 |
+
"category_llm":result_llms["brand"],
|
157 |
+
"predicted_brand": result_llms["model"],
|
158 |
+
# "clip_confidence": clip_confidence,
|
159 |
+
"price":result_llms["price"],
|
160 |
+
"details":result_llms["description"],
|
161 |
+
"detected_text":detected_text,
|
162 |
+
})
|
163 |
+
|
164 |
+
valid_indices = set(range(len(predictions)))
|
165 |
+
|
166 |
+
# Iterate over all files in the directory
|
167 |
+
for filename in os.listdir(cropped_images_dir):
|
168 |
+
# Check if the filename matches the pattern for cropped images
|
169 |
+
if filename.startswith("crop_") and filename.endswith(".jpg"):
|
170 |
+
# Extract the index from the filename
|
171 |
+
try:
|
172 |
+
file_idx = int(filename.split("_")[1].split(".")[0])
|
173 |
+
if file_idx not in valid_indices:
|
174 |
+
# Delete the file if its index is not valid
|
175 |
+
file_path = os.path.join(cropped_images_dir, filename)
|
176 |
+
os.remove(file_path)
|
177 |
+
print(f"Deleted excess file: {filename}")
|
178 |
+
except ValueError:
|
179 |
+
# Skip files that don't match the pattern
|
180 |
+
continue
|
181 |
+
|
182 |
+
return output
|
183 |
+
|
184 |
+
|
185 |
|