Spaces:
Sleeping
Sleeping
File size: 6,026 Bytes
bca9cda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
from fastapi import FastAPI, File, UploadFile, Response, HTTPException
from fastapi.responses import JSONResponse, FileResponse
from fastapi.middleware.cors import CORSMiddleware
from PIL import Image
import io
import sqlite3
from pydantic import BaseModel, EmailStr
from pathlib import Path
from model import YOLOModel
import shutil
from openpyxl import Workbook
from openpyxl.drawing.image import Image as ExcelImage
import os
yolo = YOLOModel()
UPLOAD_FOLDER = Path("./uploads")
UPLOAD_FOLDER.mkdir(exist_ok=True)
app = FastAPI()
cropped_images_dir = "cropped_images"
# Initialize SQLite database
def init_db():
conn = sqlite3.connect('users.db')
c = conn.cursor()
c.execute('''
CREATE TABLE IF NOT EXISTS users (
id INTEGER PRIMARY KEY AUTOINCREMENT,
firstName TEXT NOT NULL,
lastName TEXT NOT NULL,
country TEXT,
number TEXT, -- Phone number stored as TEXT to allow various formats
email TEXT UNIQUE NOT NULL, -- Email should be unique and non-null
password TEXT NOT NULL -- Password will be stored as a string (hashed ideally)
)
''')
conn.commit()
conn.close()
init_db()
class UserSignup(BaseModel):
firstName: str
lastName: str
country: str
number: str
email: EmailStr
password: str
class UserLogin(BaseModel):
email: str
password: str
@app.post("/signup")
async def signup(user_data: UserSignup):
try:
conn = sqlite3.connect('users.db')
c = conn.cursor()
# Check if user already exists
c.execute("SELECT * FROM users WHERE email = ?", (user_data.email,))
if c.fetchone():
raise HTTPException(status_code=400, detail="Email already registered")
# Insert new user
c.execute("""
INSERT INTO users (firstName, lastName, country, number, email, password)
VALUES (?, ?, ?, ?, ?, ?)
""", (user_data.firstName, user_data.lastName, user_data.country, user_data.number, user_data.email, user_data.password))
conn.commit()
conn.close()
return {"message": "User registered successfully", "email": user_data.email}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/login")
async def login(user_data: UserLogin):
try:
conn = sqlite3.connect('users.db')
c = conn.cursor()
# Find user
c.execute("SELECT * FROM users WHERE email = ? AND password = ?",
(user_data.email, user_data.password))
user = c.fetchone()
conn.close()
if not user:
raise HTTPException(status_code=401, detail="Invalid credentials")
return {
"message": "Login successful",
"user": {
"firstName": user[1],
"lastName": user[2],
"email": user[3]
}
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/upload")
async def upload_image(image: UploadFile = File(...)):
# print(f'\n\t\tUPLOADED!!!!')
try:
file_path = UPLOAD_FOLDER / image.filename
with file_path.open("wb") as buffer:
shutil.copyfileobj(image.file, buffer)
# print(f'Starting to pass into model, {file_path}')
# Perform YOLO inference
predictions = yolo.predict(str(file_path))
print(f'\n\n\n{predictions}\n\n\ \n\t\t\t\tare predictions')
# Clean up uploaded file
file_path.unlink() # Remove file after processing
return JSONResponse(content={"items": predictions})
except Exception as e:
return JSONResponse(content={"error": str(e)}, status_code=500)
def cleanup_images(directory: str):
"""Remove all images in the directory."""
for file in Path(directory).glob("*"):
file.unlink()
@app.post("/generate-excel/")
async def generate_excel(predictions: list):
# Create an Excel workbook
workbook = Workbook()
sheet = workbook.active
sheet.title = "Predictions"
# Add headers
headers = ["Category", "Confidence", "Predicted Brand", "Price", "Details", "Detected Text", "Image"]
sheet.append(headers)
for idx, prediction in enumerate(predictions):
# Extract details from the prediction
category = prediction["category"]
confidence = prediction["confidence"]
predicted_brand = prediction["predicted_brand"]
price = prediction["price"]
details = prediction["details"]
detected_text = prediction["detected_text"]
cropped_image_path = prediction["image_path"]
# Append data row
sheet.append([category, confidence, predicted_brand, price, details, detected_text])
# Add the image to the Excel file (if it exists)
if os.path.exists(cropped_image_path):
img = ExcelImage(cropped_image_path)
img.width, img.height = 50, 50 # Resize image to fit into the cell
sheet.add_image(img, f"G{idx + 2}") # Place in the "Image" column
excel_file_path = "predictions_with_images.xlsx"
workbook.save(excel_file_path)
# Cleanup after saving
cleanup_images(cropped_images_dir)
# Serve the Excel file as a response
return FileResponse(
excel_file_path,
media_type="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
filename="predictions_with_images.xlsx"
)
# code to accept the localhost to get images from
app.add_middleware(
CORSMiddleware,
allow_origins=["http://192.168.56.1:3000", "http://192.168.56.1:3001", "http://localhost:3000"],
allow_methods=["*"],
allow_headers=["*"],
) |