File size: 6,026 Bytes
bca9cda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
from fastapi import FastAPI, File, UploadFile, Response, HTTPException
from fastapi.responses import JSONResponse, FileResponse
from fastapi.middleware.cors import CORSMiddleware
from PIL import Image
import io

import sqlite3
from pydantic import BaseModel, EmailStr

from pathlib import Path
from model import YOLOModel
import shutil

from openpyxl import Workbook
from openpyxl.drawing.image import Image as ExcelImage
import os 

yolo = YOLOModel()

UPLOAD_FOLDER = Path("./uploads")
UPLOAD_FOLDER.mkdir(exist_ok=True)

app = FastAPI()

cropped_images_dir = "cropped_images"

# Initialize SQLite database
def init_db():
    conn = sqlite3.connect('users.db')
    c = conn.cursor()
    c.execute('''

        CREATE TABLE IF NOT EXISTS users (

            id INTEGER PRIMARY KEY AUTOINCREMENT,

            firstName TEXT NOT NULL,

            lastName TEXT NOT NULL,

            country TEXT,

            number TEXT,  -- Phone number stored as TEXT to allow various formats

            email TEXT UNIQUE NOT NULL,  -- Email should be unique and non-null

            password TEXT NOT NULL  -- Password will be stored as a string (hashed ideally)

        )

    ''')
    conn.commit()
    conn.close()

init_db()

class UserSignup(BaseModel):
    firstName: str
    lastName: str
    country: str 
    number: str 
    email: EmailStr
    password: str

class UserLogin(BaseModel):
    email: str
    password: str

@app.post("/signup")
async def signup(user_data: UserSignup):
    try:
        conn = sqlite3.connect('users.db')
        c = conn.cursor()
        
        # Check if user already exists
        c.execute("SELECT * FROM users WHERE email = ?", (user_data.email,))
        if c.fetchone():
            raise HTTPException(status_code=400, detail="Email already registered")
        
        # Insert new user
        c.execute("""

            INSERT INTO users (firstName, lastName, country, number, email, password) 

            VALUES (?, ?, ?, ?, ?, ?)

        """, (user_data.firstName, user_data.lastName, user_data.country, user_data.number, user_data.email, user_data.password))
        
        conn.commit()
        conn.close()
        
        return {"message": "User registered successfully", "email": user_data.email}
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

@app.post("/login")
async def login(user_data: UserLogin):
    try:
        conn = sqlite3.connect('users.db')
        c = conn.cursor()
        
        # Find user
        c.execute("SELECT * FROM users WHERE email = ? AND password = ?", 
                  (user_data.email, user_data.password))
        user = c.fetchone()
        
        conn.close()
        
        if not user:
            raise HTTPException(status_code=401, detail="Invalid credentials")
        
        return {
            "message": "Login successful", 
            "user": {
                "firstName": user[1],
                "lastName": user[2],
                "email": user[3]
            }
        }
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))



@app.post("/upload")
async def upload_image(image: UploadFile = File(...)):
    # print(f'\n\t\tUPLOADED!!!!')
    try:
        file_path = UPLOAD_FOLDER / image.filename
        with file_path.open("wb") as buffer:
            shutil.copyfileobj(image.file, buffer)
        # print(f'Starting to pass into model, {file_path}')
        # Perform YOLO inference
        predictions = yolo.predict(str(file_path))
        print(f'\n\n\n{predictions}\n\n\ \n\t\t\t\tare predictions')
        # Clean up uploaded file
        file_path.unlink()  # Remove file after processing
        return JSONResponse(content={"items": predictions})
    

    except Exception as e:
        return JSONResponse(content={"error": str(e)}, status_code=500)


def cleanup_images(directory: str):
    """Remove all images in the directory."""
    for file in Path(directory).glob("*"):
        file.unlink()


@app.post("/generate-excel/")
async def generate_excel(predictions: list):
    # Create an Excel workbook
    workbook = Workbook()
    sheet = workbook.active
    sheet.title = "Predictions"

    # Add headers
    headers = ["Category", "Confidence", "Predicted Brand", "Price", "Details", "Detected Text", "Image"]
    sheet.append(headers)

    for idx, prediction in enumerate(predictions):
        # Extract details from the prediction
        category = prediction["category"]
        confidence = prediction["confidence"]
        predicted_brand = prediction["predicted_brand"]
        price = prediction["price"]
        details = prediction["details"]
        detected_text = prediction["detected_text"]
        cropped_image_path = prediction["image_path"]

        # Append data row
        sheet.append([category, confidence, predicted_brand, price, details, detected_text])

        # Add the image to the Excel file (if it exists)
        if os.path.exists(cropped_image_path):
            img = ExcelImage(cropped_image_path)
            img.width, img.height = 50, 50  # Resize image to fit into the cell
            sheet.add_image(img, f"G{idx + 2}")  # Place in the "Image" column

    excel_file_path = "predictions_with_images.xlsx"
    workbook.save(excel_file_path)

    # Cleanup after saving
    cleanup_images(cropped_images_dir)

    # Serve the Excel file as a response
    return FileResponse(
        excel_file_path,
        media_type="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
        filename="predictions_with_images.xlsx"
    )


# code to accept the localhost to get images from
app.add_middleware(
    CORSMiddleware,
    allow_origins=["http://192.168.56.1:3000", "http://192.168.56.1:3001", "http://localhost:3000"],
    allow_methods=["*"],
    allow_headers=["*"],
)