whatisit / app.py
root-sajjan's picture
Update app.py
193372d verified
from fastapi import FastAPI, File, UploadFile, Response, HTTPException
from fastapi.responses import JSONResponse, FileResponse, StreamingResponse
from fastapi.middleware.cors import CORSMiddleware
from PIL import Image
from datetime import datetime
import io
from io import BytesIO
import requests
import sqlite3
from pydantic import BaseModel, EmailStr
from typing import List, Optional
from pathlib import Path
from model import YOLOModel
import shutil
from openpyxl import Workbook
from openpyxl.drawing.image import Image as ExcelImage
from openpyxl.styles import Alignment
import os
yolo = YOLOModel()
UPLOAD_FOLDER = Path("./uploads")
UPLOAD_FOLDER.mkdir(exist_ok=True)
app = FastAPI()
cropped_images_dir = "cropped_images"
# Initialize SQLite database
def init_db():
conn = sqlite3.connect('users.db')
c = conn.cursor()
c.execute('''
CREATE TABLE IF NOT EXISTS users (
id INTEGER PRIMARY KEY AUTOINCREMENT,
firstName TEXT NOT NULL,
lastName TEXT NOT NULL,
country TEXT,
number TEXT, -- Phone number stored as TEXT to allow various formats
email TEXT UNIQUE NOT NULL, -- Email should be unique and non-null
password TEXT NOT NULL -- Password will be stored as a string (hashed ideally)
)
''')
conn.commit()
conn.close()
init_db()
class UserSignup(BaseModel):
firstName: str
lastName: str
country: str
number: str
email: EmailStr
password: str
class UserLogin(BaseModel):
email: str
password: str
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_methods=["*"],
allow_headers=["*"],
)
@app.post("/signup")
async def signup(user_data: UserSignup):
try:
conn = sqlite3.connect('users.db')
c = conn.cursor()
# Check if user already exists
c.execute("SELECT * FROM users WHERE email = ?", (user_data.email,))
if c.fetchone():
raise HTTPException(status_code=400, detail="Email already registered")
# Insert new user
c.execute("""
INSERT INTO users (firstName, lastName, country, number, email, password)
VALUES (?, ?, ?, ?, ?, ?)
""", (user_data.firstName, user_data.lastName, user_data.country, user_data.number, user_data.email, user_data.password))
conn.commit()
conn.close()
return {"message": "User registered successfully", "email": user_data.email}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/login")
async def login(user_data: UserLogin):
try:
conn = sqlite3.connect('users.db')
c = conn.cursor()
# Find user
c.execute("SELECT * FROM users WHERE email = ? AND password = ?",
(user_data.email, user_data.password))
user = c.fetchone()
conn.close()
if not user:
raise HTTPException(status_code=401, detail="Invalid credentials")
return {
"message": "Login successful",
"user": {
"firstName": user[1],
"lastName": user[2],
"email": user[3]
}
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/upload")
async def upload_image(image: UploadFile = File(...)):
# print(f'\n\t\tUPLOADED!!!!')
try:
file_path = UPLOAD_FOLDER / image.filename
with file_path.open("wb") as buffer:
shutil.copyfileobj(image.file, buffer)
# print(f'Starting to pass into model, {file_path}')
# Perform YOLO inference
predictions = yolo.predict(str(file_path))
print(f'\n\n\n{predictions}\n\n\ \n\t\t\t\tare predictions')
# Clean up uploaded file
file_path.unlink() # Remove file after processing
return JSONResponse(content={"items": predictions})
except Exception as e:
return JSONResponse(content={"error": str(e)}, status_code=500)
@app.get("/download_cropped_image/{image_idx}")
def download_cropped_image(image_idx: int):
cropped_image_path = cropped_images_dir / f"crop_{image_idx}.jpg"
if cropped_image_path.exists():
return FileResponse(cropped_image_path, media_type="image/jpeg")
return JSONResponse(content={"error": "Cropped image not found"}, status_code=404)
def cleanup_images(directory: str):
"""Remove all images in the directory."""
for file in Path(directory).glob("*"):
file.unlink()
'''
@app.post("/generate-excel/")
async def generate_excel(predictions: list):
# Create an Excel workbook
workbook = Workbook()
sheet = workbook.active
sheet.title = "Predictions"
# Add headers
headers = ["Category", "Confidence", "Predicted Brand", "Price", "Details", "Detected Text", "Image"]
sheet.append(headers)
for idx, prediction in enumerate(predictions):
# Extract details from the prediction
category = prediction["category"]
confidence = prediction["confidence"]
predicted_brand = prediction["predicted_brand"]
price = prediction["price"]
details = prediction["details"]
detected_text = prediction["detected_text"]
cropped_image_path = prediction["image_path"]
# Append data row
sheet.append([category, confidence, predicted_brand, price, details, detected_text])
# Add the image to the Excel file (if it exists)
if os.path.exists(cropped_image_path):
img = ExcelImage(cropped_image_path)
img.width, img.height = 50, 50 # Resize image to fit into the cell
sheet.add_image(img, f"G{idx + 2}") # Place in the "Image" column
excel_file_path = "predictions_with_images.xlsx"
workbook.save(excel_file_path)
# Cleanup after saving
cleanup_images(cropped_images_dir)
# Serve the Excel file as a response
return FileResponse(
excel_file_path,
media_type="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
filename="predictions_with_images.xlsx"
)
'''
# Define the Prediction model
class Prediction(BaseModel):
category: Optional[str]
confidence: Optional[float]
predicted_brand: Optional[str]
price: Optional[str]
details: Optional[str]
detected_text: Optional[str]
image_url: Optional[str]
image_path: Optional[str]
@app.post("/generate-excel/")
async def generate_excel(predictions: List[Prediction]):
print('Generate excel called')
# Create an Excel workbook
workbook = Workbook()
sheet = workbook.active
sheet.title = "Predictions"
# Add headers
headers = ["Category", "Confidence", "Predicted Brand", "Price", "Image URL", "Details", "Detected Text"]
sheet.append(headers)
# Add prediction rows (skipping for brevity)
# Set header style and alignment
for cell in sheet[1]:
cell.alignment = Alignment(horizontal="center", vertical="center", wrap_text=True)
sheet.row_dimensions[1].height = 30 # Adjust header row height
# Set column widths based on data type
column_widths = {
"A": 20, # Category
"B": 15, # Confidence
"C": 40, # Predicted Brand
"D": 15, # Price
"E": 50, # Image URL
"F": 30, # Details
"G": 30 # Detected Text
}
for col, width in column_widths.items():
sheet.column_dimensions[col].width = width
# Add prediction rows
for idx, prediction in enumerate(predictions):
row_index = idx + 2 # Start from the second row
# Add data to the row
sheet.append([
prediction.category,
prediction.confidence,
prediction.predicted_brand,
prediction.price,
prediction.image_url,
prediction.details,
prediction.detected_text,
])
# Adjust row height for multiline text
sheet.row_dimensions[row_index].height = 180 # Default height for rows
# Wrap text in all cells of the row
for col_idx in range(1, 8): # Columns A to G
cell = sheet.cell(row=row_index, column=col_idx)
cell.alignment = Alignment(wrap_text=True, vertical="top")
if prediction.image_url:
try:
response = requests.get(prediction.image_url)
img = ExcelImage(BytesIO(response.content))
img.width, img.height = 160, 160 # Resize image to fit into the cell
img_cell = f"G{row_index}" # Image column
sheet.add_image(img, img_cell)
except requests.exceptions.RequestException as e:
print(f"Error downloading image: {e}")
# # Add image if the path exists
# if os.path.exists(prediction.image_path):
# img = ExcelImage(prediction.image_path)
# img.width, img.height = 160, 160 # Resize image to fit into the cell
# img_cell = f"G{row_index}" # Image column
# sheet.add_image(img, img_cell)
# Create a unique filename based on the current timestamp or index
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
excel_file_path = f"/predictions_with_images_{timestamp}.xlsx"
print(excel_file_path)
# Save the Excel file to the specified path
workbook.save(excel_file_path)
# Check if the directory exists, if not, create it (to store multiple files)
if not os.path.exists("/predictions"):
os.makedirs("/predictions")
# Move the file to a new directory
os.rename(excel_file_path, f"/predictions/{os.path.basename(excel_file_path)}")
hf_path = "https://huggingface.co/spaces/root-sajjan/whatisit/resolve/main"
excel_file_path = hf_path + f"/predictions/{os.path.basename(excel_file_path)}"+"?download=True"
return JSONResponse(content={"download_link": excel_file_path})
# else:
# return JSONResponse(status_code=500, content={"error": "File upload failed"})
'''
@app.post("/generate-excel/")
async def generate_excel(predictions: List[Prediction]):
print('Generate excel called')
# Create an Excel workbook
workbook = Workbook()
sheet = workbook.active
sheet.title = "Predictions"
# Add headers
headers = ["Category", "Confidence", "Predicted Brand", "Price", "Image URL", "Details", "Detected Text"]
sheet.append(headers)
# Set header style and alignment
for cell in sheet[1]:
cell.alignment = Alignment(horizontal="center", vertical="center", wrap_text=True)
sheet.row_dimensions[1].height = 30 # Adjust header row height
# Set column widths based on data type
column_widths = {
"A": 20, # Category
"B": 15, # Confidence
"C": 40, # Predicted Brand
"D": 15, # Price
"E": 50, # Image URL
"F": 30, # Details
"G": 30 # Detected Text
}
for col, width in column_widths.items():
sheet.column_dimensions[col].width = width
# Add prediction rows
for idx, prediction in enumerate(predictions):
row_index = idx + 2 # Start from the second row
# Add data to the row
sheet.append([
prediction.category,
prediction.confidence,
prediction.predicted_brand,
prediction.price,
prediction.image_url,
prediction.details,
prediction.detected_text,
])
# Adjust row height for multiline text
sheet.row_dimensions[row_index].height = 180 # Default height for rows
# Wrap text in all cells of the row
for col_idx in range(1, 8): # Columns A to G
cell = sheet.cell(row=row_index, column=col_idx)
cell.alignment = Alignment(wrap_text=True, vertical="top")
# If image URL is provided, download it
if prediction.image_url:
try:
response = requests.get(prediction.image_url)
img = ExcelImage(BytesIO(response.content))
img.width, img.height = 160, 160 # Resize image to fit into the cell
img_cell = f"G{row_index}" # Image column
sheet.add_image(img, img_cell)
except requests.exceptions.RequestException as e:
print(f"Error downloading image: {e}")
# Optionally add a placeholder image or text
# Save the Excel file
excel_file_path = "/tmp/predictions_with_images.xlsx"
workbook.save(excel_file_path)
# Serve the Excel file as a response
return FileResponse(
excel_file_path,
media_type="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
filename="predictions_with_images.xlsx"
)
@app.post("/generate-excel2/")
async def generate_excel(predictions: List[Prediction]):
print('Generate excel called')
# Create an Excel workbook
workbook = Workbook()
sheet = workbook.active
sheet.title = "Predictions"
# Add headers
headers = ["Category", "Confidence", "Predicted Brand", "Price", "Image URL", "Details", "Detected Text", ]
sheet.append(headers)
# Set header style and alignment
for cell in sheet[1]:
cell.alignment = Alignment(horizontal="center", vertical="center", wrap_text=True)
sheet.row_dimensions[1].height = 30 # Adjust header row height
# Set column widths based on data type
column_widths = {
"A": 20, # Category
"B": 15, # Confidence
"C": 40, # Predicted Brand
"D": 15, # Price
"E": 50, # Image URL
"F": 30, # Details
"G": 30 # Detected Text
}
for col, width in column_widths.items():
sheet.column_dimensions[col].width = width
# Add prediction rows
for idx, prediction in enumerate(predictions):
row_index = idx + 2 # Start from the second row
# Add data to the row
sheet.append([
prediction.category,
prediction.confidence,
prediction.predicted_brand,
prediction.price,
prediction.image_url,
prediction.details,
prediction.detected_text,
])
# Adjust row height for multiline text
sheet.row_dimensions[row_index].height = 180 # Default height for rows
# Wrap text in all cells of the row
for col_idx in range(1, 8): # Columns A to G
cell = sheet.cell(row=row_index, column=col_idx)
cell.alignment = Alignment(wrap_text=True, vertical="top")
# Add image if the path exists
if os.path.exists(prediction.image_path):
img = ExcelImage(prediction.image_path)
img.width, img.height = 160, 160 # Resize image to fit into the cell
img_cell = f"G{row_index}" # Image column
sheet.add_image(img, img_cell)
# Save the Excel file
excel_file_path = "predictions_with_images.xlsx"
workbook.save(excel_file_path)
# Serve the Excel file as a response
return FileResponse(
excel_file_path,
media_type="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
filename="predictions_with_images.xlsx"
)
'''
'''
@app.post("/generate-excel/")
async def generate_excel(predictions: list):
print('Generate excel called')
# Create an Excel workbook
workbook = Workbook()
sheet = workbook.active
sheet.title = "Predictions"
# Add headers
headers = ["Category", "Confidence", "Predicted Brand", "Price", "Details", "Detected Text", "Image URL"]
sheet.append(headers)
# Format the header row
for cell in sheet[1]:
cell.alignment = Alignment(horizontal="center", vertical="center")
for idx, prediction in enumerate(predictions):
# Extract details from the prediction
category = prediction["category"]
confidence = prediction["confidence"]
predicted_brand = prediction["predicted_brand"]
price = prediction["price"]
details = prediction["details"]
detected_text = prediction["detected_text"]
image_url = prediction["image_url"] # URL to the image
cropped_image_path = prediction["image_path"] # Path to local image file for Excel embedding
# Append data row
sheet.append([category, confidence, predicted_brand, price, details, detected_text, image_url])
# If the image path exists, add the image to the Excel file
if os.path.exists(cropped_image_path):
img = ExcelImage(cropped_image_path)
img.width, img.height = 50, 50 # Resize image to fit into the cell
sheet.add_image(img, f"G{idx + 2}") # Place in the "Image" column
excel_file_path = "predictions_with_images.xlsx"
workbook.save(excel_file_path)
# Serve the Excel file as a response
return FileResponse(
excel_file_path,
media_type="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
filename="predictions_with_images.xlsx"
)
'''
# code to accept the localhost to get images from
if __name__ == "__main__":
import uvicorn
uvicorn.run("app:app", host="0.0.0.0", port=7860, reload=True)