root-sajjan commited on
Commit
41658a6
·
verified ·
1 Parent(s): bca9cda
Files changed (1) hide show
  1. main.py +337 -333
main.py CHANGED
@@ -1,333 +1,337 @@
1
- from fastapi import FastAPI, File, UploadFile, Response, HTTPException
2
- from fastapi.responses import JSONResponse, FileResponse
3
- from fastapi.middleware.cors import CORSMiddleware
4
- from PIL import Image
5
- import io
6
- import requests
7
- import sqlite3
8
- from pydantic import BaseModel, EmailStr
9
- from typing import List, Optional
10
-
11
-
12
- from pathlib import Path
13
- from model import YOLOModel
14
- import shutil
15
-
16
- from openpyxl import Workbook
17
- from openpyxl.drawing.image import Image as ExcelImage
18
- from openpyxl.styles import Alignment
19
- import os
20
-
21
- yolo = YOLOModel()
22
-
23
- UPLOAD_FOLDER = Path("./uploads")
24
- UPLOAD_FOLDER.mkdir(exist_ok=True)
25
-
26
- app = FastAPI()
27
-
28
- cropped_images_dir = "cropped_images"
29
-
30
- # Initialize SQLite database
31
- def init_db():
32
- conn = sqlite3.connect('users.db')
33
- c = conn.cursor()
34
- c.execute('''
35
- CREATE TABLE IF NOT EXISTS users (
36
- id INTEGER PRIMARY KEY AUTOINCREMENT,
37
- firstName TEXT NOT NULL,
38
- lastName TEXT NOT NULL,
39
- country TEXT,
40
- number TEXT, -- Phone number stored as TEXT to allow various formats
41
- email TEXT UNIQUE NOT NULL, -- Email should be unique and non-null
42
- password TEXT NOT NULL -- Password will be stored as a string (hashed ideally)
43
- )
44
- ''')
45
- conn.commit()
46
- conn.close()
47
-
48
- init_db()
49
-
50
- class UserSignup(BaseModel):
51
- firstName: str
52
- lastName: str
53
- country: str
54
- number: str
55
- email: EmailStr
56
- password: str
57
-
58
- class UserLogin(BaseModel):
59
- email: str
60
- password: str
61
-
62
- @app.post("/signup")
63
- async def signup(user_data: UserSignup):
64
- try:
65
- conn = sqlite3.connect('users.db')
66
- c = conn.cursor()
67
-
68
- # Check if user already exists
69
- c.execute("SELECT * FROM users WHERE email = ?", (user_data.email,))
70
- if c.fetchone():
71
- raise HTTPException(status_code=400, detail="Email already registered")
72
-
73
- # Insert new user
74
- c.execute("""
75
- INSERT INTO users (firstName, lastName, country, number, email, password)
76
- VALUES (?, ?, ?, ?, ?, ?)
77
- """, (user_data.firstName, user_data.lastName, user_data.country, user_data.number, user_data.email, user_data.password))
78
-
79
- conn.commit()
80
- conn.close()
81
-
82
- return {"message": "User registered successfully", "email": user_data.email}
83
- except Exception as e:
84
- raise HTTPException(status_code=500, detail=str(e))
85
-
86
- @app.post("/login")
87
- async def login(user_data: UserLogin):
88
- try:
89
- conn = sqlite3.connect('users.db')
90
- c = conn.cursor()
91
-
92
- # Find user
93
- c.execute("SELECT * FROM users WHERE email = ? AND password = ?",
94
- (user_data.email, user_data.password))
95
- user = c.fetchone()
96
-
97
- conn.close()
98
-
99
- if not user:
100
- raise HTTPException(status_code=401, detail="Invalid credentials")
101
-
102
- return {
103
- "message": "Login successful",
104
- "user": {
105
- "firstName": user[1],
106
- "lastName": user[2],
107
- "email": user[3]
108
- }
109
- }
110
- except Exception as e:
111
- raise HTTPException(status_code=500, detail=str(e))
112
-
113
-
114
-
115
- @app.post("/upload")
116
- async def upload_image(image: UploadFile = File(...)):
117
- # print(f'\n\t\tUPLOADED!!!!')
118
- try:
119
- file_path = UPLOAD_FOLDER / image.filename
120
- with file_path.open("wb") as buffer:
121
- shutil.copyfileobj(image.file, buffer)
122
- # print(f'Starting to pass into model, {file_path}')
123
- # Perform YOLO inference
124
- predictions = yolo.predict(str(file_path))
125
- print(f'\n\n\n{predictions}\n\n\ \n\t\t\t\tare predictions')
126
- # Clean up uploaded file
127
- file_path.unlink() # Remove file after processing
128
- return JSONResponse(content={"items": predictions})
129
-
130
-
131
- except Exception as e:
132
- return JSONResponse(content={"error": str(e)}, status_code=500)
133
-
134
-
135
- @app.get("/download_cropped_image/{image_idx}")
136
- def download_cropped_image(image_idx: int):
137
- cropped_image_path = cropped_images_dir / f"crop_{image_idx}.jpg"
138
- if cropped_image_path.exists():
139
- return FileResponse(cropped_image_path, media_type="image/jpeg")
140
- return JSONResponse(content={"error": "Cropped image not found"}, status_code=404)
141
-
142
-
143
- def cleanup_images(directory: str):
144
- """Remove all images in the directory."""
145
- for file in Path(directory).glob("*"):
146
- file.unlink()
147
- '''
148
-
149
- @app.post("/generate-excel/")
150
- async def generate_excel(predictions: list):
151
- # Create an Excel workbook
152
- workbook = Workbook()
153
- sheet = workbook.active
154
- sheet.title = "Predictions"
155
-
156
- # Add headers
157
- headers = ["Category", "Confidence", "Predicted Brand", "Price", "Details", "Detected Text", "Image"]
158
- sheet.append(headers)
159
-
160
- for idx, prediction in enumerate(predictions):
161
- # Extract details from the prediction
162
- category = prediction["category"]
163
- confidence = prediction["confidence"]
164
- predicted_brand = prediction["predicted_brand"]
165
- price = prediction["price"]
166
- details = prediction["details"]
167
- detected_text = prediction["detected_text"]
168
- cropped_image_path = prediction["image_path"]
169
-
170
- # Append data row
171
- sheet.append([category, confidence, predicted_brand, price, details, detected_text])
172
-
173
- # Add the image to the Excel file (if it exists)
174
- if os.path.exists(cropped_image_path):
175
- img = ExcelImage(cropped_image_path)
176
- img.width, img.height = 50, 50 # Resize image to fit into the cell
177
- sheet.add_image(img, f"G{idx + 2}") # Place in the "Image" column
178
-
179
- excel_file_path = "predictions_with_images.xlsx"
180
- workbook.save(excel_file_path)
181
-
182
- # Cleanup after saving
183
- cleanup_images(cropped_images_dir)
184
-
185
- # Serve the Excel file as a response
186
- return FileResponse(
187
- excel_file_path,
188
- media_type="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
189
- filename="predictions_with_images.xlsx"
190
- )
191
-
192
- '''
193
-
194
- # Define the Prediction model
195
- class Prediction(BaseModel):
196
- category: Optional[str]
197
- confidence: Optional[float]
198
- predicted_brand: Optional[str]
199
- price: Optional[str]
200
- details: Optional[str]
201
- detected_text: Optional[str]
202
- image_url: Optional[str]
203
- image_path: Optional[str]
204
-
205
-
206
- @app.post("/generate-excel/")
207
- async def generate_excel(predictions: List[Prediction]):
208
- print('Generate excel called')
209
-
210
- # Create an Excel workbook
211
- workbook = Workbook()
212
- sheet = workbook.active
213
- sheet.title = "Predictions"
214
-
215
- # Add headers
216
- headers = ["Category", "Confidence", "Predicted Brand", "Price", "Image URL", "Details", "Detected Text", ]
217
- sheet.append(headers)
218
-
219
- # Set header style and alignment
220
- for cell in sheet[1]:
221
- cell.alignment = Alignment(horizontal="center", vertical="center", wrap_text=True)
222
- sheet.row_dimensions[1].height = 30 # Adjust header row height
223
-
224
- # Set column widths based on data type
225
- column_widths = {
226
- "A": 20, # Category
227
- "B": 15, # Confidence
228
- "C": 40, # Predicted Brand
229
- "D": 15, # Price
230
- "E": 50, # Image URL
231
- "F": 30, # Details
232
- "G": 30 # Detected Text
233
- }
234
- for col, width in column_widths.items():
235
- sheet.column_dimensions[col].width = width
236
-
237
- # Add prediction rows
238
- for idx, prediction in enumerate(predictions):
239
- row_index = idx + 2 # Start from the second row
240
-
241
- # Add data to the row
242
- sheet.append([
243
- prediction.category,
244
- prediction.confidence,
245
- prediction.predicted_brand,
246
- prediction.price,
247
- prediction.image_url,
248
- prediction.details,
249
- prediction.detected_text,
250
-
251
- ])
252
-
253
- # Adjust row height for multiline text
254
- sheet.row_dimensions[row_index].height = 180 # Default height for rows
255
-
256
- # Wrap text in all cells of the row
257
- for col_idx in range(1, 8): # Columns A to G
258
- cell = sheet.cell(row=row_index, column=col_idx)
259
- cell.alignment = Alignment(wrap_text=True, vertical="top")
260
-
261
- # Add image if the path exists
262
- if os.path.exists(prediction.image_path):
263
- img = ExcelImage(prediction.image_path)
264
- img.width, img.height = 160, 160 # Resize image to fit into the cell
265
- img_cell = f"G{row_index}" # Image column
266
- sheet.add_image(img, img_cell)
267
-
268
- # Save the Excel file
269
- excel_file_path = "predictions_with_images.xlsx"
270
- workbook.save(excel_file_path)
271
-
272
- # Serve the Excel file as a response
273
- return FileResponse(
274
- excel_file_path,
275
- media_type="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
276
- filename="predictions_with_images.xlsx"
277
- )
278
- '''
279
-
280
- @app.post("/generate-excel/")
281
- async def generate_excel(predictions: list):
282
- print('Generate excel called')
283
- # Create an Excel workbook
284
- workbook = Workbook()
285
- sheet = workbook.active
286
- sheet.title = "Predictions"
287
-
288
- # Add headers
289
- headers = ["Category", "Confidence", "Predicted Brand", "Price", "Details", "Detected Text", "Image URL"]
290
- sheet.append(headers)
291
-
292
- # Format the header row
293
- for cell in sheet[1]:
294
- cell.alignment = Alignment(horizontal="center", vertical="center")
295
-
296
- for idx, prediction in enumerate(predictions):
297
- # Extract details from the prediction
298
- category = prediction["category"]
299
- confidence = prediction["confidence"]
300
- predicted_brand = prediction["predicted_brand"]
301
- price = prediction["price"]
302
- details = prediction["details"]
303
- detected_text = prediction["detected_text"]
304
- image_url = prediction["image_url"] # URL to the image
305
- cropped_image_path = prediction["image_path"] # Path to local image file for Excel embedding
306
-
307
- # Append data row
308
- sheet.append([category, confidence, predicted_brand, price, details, detected_text, image_url])
309
-
310
- # If the image path exists, add the image to the Excel file
311
- if os.path.exists(cropped_image_path):
312
- img = ExcelImage(cropped_image_path)
313
- img.width, img.height = 50, 50 # Resize image to fit into the cell
314
- sheet.add_image(img, f"G{idx + 2}") # Place in the "Image" column
315
-
316
- excel_file_path = "predictions_with_images.xlsx"
317
- workbook.save(excel_file_path)
318
-
319
- # Serve the Excel file as a response
320
- return FileResponse(
321
- excel_file_path,
322
- media_type="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
323
- filename="predictions_with_images.xlsx"
324
- )
325
- '''
326
-
327
- # code to accept the localhost to get images from
328
- app.add_middleware(
329
- CORSMiddleware,
330
- allow_origins=["http://192.168.56.1:3000", "http://192.168.56.1:3001", "http://localhost:3000"],
331
- allow_methods=["*"],
332
- allow_headers=["*"],
333
- )
 
 
 
 
 
1
+ from fastapi import FastAPI, File, UploadFile, Response, HTTPException
2
+ from fastapi.responses import JSONResponse, FileResponse
3
+ from fastapi.middleware.cors import CORSMiddleware
4
+ from PIL import Image
5
+ import io
6
+ import requests
7
+ import sqlite3
8
+ from pydantic import BaseModel, EmailStr
9
+ from typing import List, Optional
10
+
11
+
12
+ from pathlib import Path
13
+ from model import YOLOModel
14
+ import shutil
15
+
16
+ from openpyxl import Workbook
17
+ from openpyxl.drawing.image import Image as ExcelImage
18
+ from openpyxl.styles import Alignment
19
+ import os
20
+
21
+ yolo = YOLOModel()
22
+
23
+ UPLOAD_FOLDER = Path("./uploads")
24
+ UPLOAD_FOLDER.mkdir(exist_ok=True)
25
+
26
+ app = FastAPI()
27
+
28
+ cropped_images_dir = "cropped_images"
29
+
30
+ # Initialize SQLite database
31
+ def init_db():
32
+ conn = sqlite3.connect('users.db')
33
+ c = conn.cursor()
34
+ c.execute('''
35
+ CREATE TABLE IF NOT EXISTS users (
36
+ id INTEGER PRIMARY KEY AUTOINCREMENT,
37
+ firstName TEXT NOT NULL,
38
+ lastName TEXT NOT NULL,
39
+ country TEXT,
40
+ number TEXT, -- Phone number stored as TEXT to allow various formats
41
+ email TEXT UNIQUE NOT NULL, -- Email should be unique and non-null
42
+ password TEXT NOT NULL -- Password will be stored as a string (hashed ideally)
43
+ )
44
+ ''')
45
+ conn.commit()
46
+ conn.close()
47
+
48
+ init_db()
49
+
50
+ class UserSignup(BaseModel):
51
+ firstName: str
52
+ lastName: str
53
+ country: str
54
+ number: str
55
+ email: EmailStr
56
+ password: str
57
+
58
+ class UserLogin(BaseModel):
59
+ email: str
60
+ password: str
61
+
62
+ @app.post("/signup")
63
+ async def signup(user_data: UserSignup):
64
+ try:
65
+ conn = sqlite3.connect('users.db')
66
+ c = conn.cursor()
67
+
68
+ # Check if user already exists
69
+ c.execute("SELECT * FROM users WHERE email = ?", (user_data.email,))
70
+ if c.fetchone():
71
+ raise HTTPException(status_code=400, detail="Email already registered")
72
+
73
+ # Insert new user
74
+ c.execute("""
75
+ INSERT INTO users (firstName, lastName, country, number, email, password)
76
+ VALUES (?, ?, ?, ?, ?, ?)
77
+ """, (user_data.firstName, user_data.lastName, user_data.country, user_data.number, user_data.email, user_data.password))
78
+
79
+ conn.commit()
80
+ conn.close()
81
+
82
+ return {"message": "User registered successfully", "email": user_data.email}
83
+ except Exception as e:
84
+ raise HTTPException(status_code=500, detail=str(e))
85
+
86
+ @app.post("/login")
87
+ async def login(user_data: UserLogin):
88
+ try:
89
+ conn = sqlite3.connect('users.db')
90
+ c = conn.cursor()
91
+
92
+ # Find user
93
+ c.execute("SELECT * FROM users WHERE email = ? AND password = ?",
94
+ (user_data.email, user_data.password))
95
+ user = c.fetchone()
96
+
97
+ conn.close()
98
+
99
+ if not user:
100
+ raise HTTPException(status_code=401, detail="Invalid credentials")
101
+
102
+ return {
103
+ "message": "Login successful",
104
+ "user": {
105
+ "firstName": user[1],
106
+ "lastName": user[2],
107
+ "email": user[3]
108
+ }
109
+ }
110
+ except Exception as e:
111
+ raise HTTPException(status_code=500, detail=str(e))
112
+
113
+
114
+
115
+ @app.post("/upload")
116
+ async def upload_image(image: UploadFile = File(...)):
117
+ # print(f'\n\t\tUPLOADED!!!!')
118
+ try:
119
+ file_path = UPLOAD_FOLDER / image.filename
120
+ with file_path.open("wb") as buffer:
121
+ shutil.copyfileobj(image.file, buffer)
122
+ # print(f'Starting to pass into model, {file_path}')
123
+ # Perform YOLO inference
124
+ predictions = yolo.predict(str(file_path))
125
+ print(f'\n\n\n{predictions}\n\n\ \n\t\t\t\tare predictions')
126
+ # Clean up uploaded file
127
+ file_path.unlink() # Remove file after processing
128
+ return JSONResponse(content={"items": predictions})
129
+
130
+
131
+ except Exception as e:
132
+ return JSONResponse(content={"error": str(e)}, status_code=500)
133
+
134
+
135
+ @app.get("/download_cropped_image/{image_idx}")
136
+ def download_cropped_image(image_idx: int):
137
+ cropped_image_path = cropped_images_dir / f"crop_{image_idx}.jpg"
138
+ if cropped_image_path.exists():
139
+ return FileResponse(cropped_image_path, media_type="image/jpeg")
140
+ return JSONResponse(content={"error": "Cropped image not found"}, status_code=404)
141
+
142
+
143
+ def cleanup_images(directory: str):
144
+ """Remove all images in the directory."""
145
+ for file in Path(directory).glob("*"):
146
+ file.unlink()
147
+ '''
148
+
149
+ @app.post("/generate-excel/")
150
+ async def generate_excel(predictions: list):
151
+ # Create an Excel workbook
152
+ workbook = Workbook()
153
+ sheet = workbook.active
154
+ sheet.title = "Predictions"
155
+
156
+ # Add headers
157
+ headers = ["Category", "Confidence", "Predicted Brand", "Price", "Details", "Detected Text", "Image"]
158
+ sheet.append(headers)
159
+
160
+ for idx, prediction in enumerate(predictions):
161
+ # Extract details from the prediction
162
+ category = prediction["category"]
163
+ confidence = prediction["confidence"]
164
+ predicted_brand = prediction["predicted_brand"]
165
+ price = prediction["price"]
166
+ details = prediction["details"]
167
+ detected_text = prediction["detected_text"]
168
+ cropped_image_path = prediction["image_path"]
169
+
170
+ # Append data row
171
+ sheet.append([category, confidence, predicted_brand, price, details, detected_text])
172
+
173
+ # Add the image to the Excel file (if it exists)
174
+ if os.path.exists(cropped_image_path):
175
+ img = ExcelImage(cropped_image_path)
176
+ img.width, img.height = 50, 50 # Resize image to fit into the cell
177
+ sheet.add_image(img, f"G{idx + 2}") # Place in the "Image" column
178
+
179
+ excel_file_path = "predictions_with_images.xlsx"
180
+ workbook.save(excel_file_path)
181
+
182
+ # Cleanup after saving
183
+ cleanup_images(cropped_images_dir)
184
+
185
+ # Serve the Excel file as a response
186
+ return FileResponse(
187
+ excel_file_path,
188
+ media_type="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
189
+ filename="predictions_with_images.xlsx"
190
+ )
191
+
192
+ '''
193
+
194
+ # Define the Prediction model
195
+ class Prediction(BaseModel):
196
+ category: Optional[str]
197
+ confidence: Optional[float]
198
+ predicted_brand: Optional[str]
199
+ price: Optional[str]
200
+ details: Optional[str]
201
+ detected_text: Optional[str]
202
+ image_url: Optional[str]
203
+ image_path: Optional[str]
204
+
205
+
206
+ @app.post("/generate-excel/")
207
+ async def generate_excel(predictions: List[Prediction]):
208
+ print('Generate excel called')
209
+
210
+ # Create an Excel workbook
211
+ workbook = Workbook()
212
+ sheet = workbook.active
213
+ sheet.title = "Predictions"
214
+
215
+ # Add headers
216
+ headers = ["Category", "Confidence", "Predicted Brand", "Price", "Image URL", "Details", "Detected Text", ]
217
+ sheet.append(headers)
218
+
219
+ # Set header style and alignment
220
+ for cell in sheet[1]:
221
+ cell.alignment = Alignment(horizontal="center", vertical="center", wrap_text=True)
222
+ sheet.row_dimensions[1].height = 30 # Adjust header row height
223
+
224
+ # Set column widths based on data type
225
+ column_widths = {
226
+ "A": 20, # Category
227
+ "B": 15, # Confidence
228
+ "C": 40, # Predicted Brand
229
+ "D": 15, # Price
230
+ "E": 50, # Image URL
231
+ "F": 30, # Details
232
+ "G": 30 # Detected Text
233
+ }
234
+ for col, width in column_widths.items():
235
+ sheet.column_dimensions[col].width = width
236
+
237
+ # Add prediction rows
238
+ for idx, prediction in enumerate(predictions):
239
+ row_index = idx + 2 # Start from the second row
240
+
241
+ # Add data to the row
242
+ sheet.append([
243
+ prediction.category,
244
+ prediction.confidence,
245
+ prediction.predicted_brand,
246
+ prediction.price,
247
+ prediction.image_url,
248
+ prediction.details,
249
+ prediction.detected_text,
250
+
251
+ ])
252
+
253
+ # Adjust row height for multiline text
254
+ sheet.row_dimensions[row_index].height = 180 # Default height for rows
255
+
256
+ # Wrap text in all cells of the row
257
+ for col_idx in range(1, 8): # Columns A to G
258
+ cell = sheet.cell(row=row_index, column=col_idx)
259
+ cell.alignment = Alignment(wrap_text=True, vertical="top")
260
+
261
+ # Add image if the path exists
262
+ if os.path.exists(prediction.image_path):
263
+ img = ExcelImage(prediction.image_path)
264
+ img.width, img.height = 160, 160 # Resize image to fit into the cell
265
+ img_cell = f"G{row_index}" # Image column
266
+ sheet.add_image(img, img_cell)
267
+
268
+ # Save the Excel file
269
+ excel_file_path = "predictions_with_images.xlsx"
270
+ workbook.save(excel_file_path)
271
+
272
+ # Serve the Excel file as a response
273
+ return FileResponse(
274
+ excel_file_path,
275
+ media_type="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
276
+ filename="predictions_with_images.xlsx"
277
+ )
278
+ '''
279
+
280
+ @app.post("/generate-excel/")
281
+ async def generate_excel(predictions: list):
282
+ print('Generate excel called')
283
+ # Create an Excel workbook
284
+ workbook = Workbook()
285
+ sheet = workbook.active
286
+ sheet.title = "Predictions"
287
+
288
+ # Add headers
289
+ headers = ["Category", "Confidence", "Predicted Brand", "Price", "Details", "Detected Text", "Image URL"]
290
+ sheet.append(headers)
291
+
292
+ # Format the header row
293
+ for cell in sheet[1]:
294
+ cell.alignment = Alignment(horizontal="center", vertical="center")
295
+
296
+ for idx, prediction in enumerate(predictions):
297
+ # Extract details from the prediction
298
+ category = prediction["category"]
299
+ confidence = prediction["confidence"]
300
+ predicted_brand = prediction["predicted_brand"]
301
+ price = prediction["price"]
302
+ details = prediction["details"]
303
+ detected_text = prediction["detected_text"]
304
+ image_url = prediction["image_url"] # URL to the image
305
+ cropped_image_path = prediction["image_path"] # Path to local image file for Excel embedding
306
+
307
+ # Append data row
308
+ sheet.append([category, confidence, predicted_brand, price, details, detected_text, image_url])
309
+
310
+ # If the image path exists, add the image to the Excel file
311
+ if os.path.exists(cropped_image_path):
312
+ img = ExcelImage(cropped_image_path)
313
+ img.width, img.height = 50, 50 # Resize image to fit into the cell
314
+ sheet.add_image(img, f"G{idx + 2}") # Place in the "Image" column
315
+
316
+ excel_file_path = "predictions_with_images.xlsx"
317
+ workbook.save(excel_file_path)
318
+
319
+ # Serve the Excel file as a response
320
+ return FileResponse(
321
+ excel_file_path,
322
+ media_type="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
323
+ filename="predictions_with_images.xlsx"
324
+ )
325
+ '''
326
+
327
+ # code to accept the localhost to get images from
328
+ app.add_middleware(
329
+ CORSMiddleware,
330
+ allow_origins=["*"],
331
+ allow_methods=["*"],
332
+ allow_headers=["*"],
333
+ )
334
+
335
+ if __name__ == "__main__":
336
+ import uvicorn
337
+ uvicorn.run("app:app", host="0.0.0.0", port=7860, reload=True)