tlucch
commited on
Commit
·
a97a6b4
1
Parent(s):
8623c4c
fix repo_id name
Browse files
app.py
CHANGED
@@ -80,7 +80,7 @@ with st.container():
|
|
80 |
if st.session_state.clicked_pp:
|
81 |
if st.session_state.clicked_pred == False:
|
82 |
with st.container():
|
83 |
-
pred_image = nib.load(hf_hub_download(repo_id= "rootstrap/Alzheimer-Classifier-Demo", repo_type="dataset", subfolder="preprocessed", filename = img_path + ".nii.gz"))
|
84 |
|
85 |
bounds_pred = plotting.find_cuts._get_auto_mask_bounds(pred_image)
|
86 |
|
@@ -94,7 +94,7 @@ with st.container():
|
|
94 |
|
95 |
else:
|
96 |
with st.container():
|
97 |
-
pred_image = nib.load(hf_hub_download(repo_id= "rootstrap/Alzheimer-Classifier-Demo", repo_type="dataset", subfolder="preprocessed", filename = img_path + ".nii.gz"))
|
98 |
|
99 |
bounds_pred = plotting.find_cuts._get_auto_mask_bounds(pred_image)
|
100 |
|
@@ -103,7 +103,7 @@ with st.container():
|
|
103 |
x_value_pred = st.sidebar.slider('Move the slider to adjust the sagittal cut ', bounds_pred[0][0], bounds_pred[0][1], mean([bounds_pred[0][0], bounds_pred[0][1]]))
|
104 |
z_value_pred = st.sidebar.slider('Move the slider to adjust the axial cut ', bounds_pred[2][0], bounds_pred[2][1], mean([bounds_pred[2][0], bounds_pred[2][1]]))
|
105 |
|
106 |
-
img_array = load_img(hf_hub_download(repo_id= "rootstrap/Alzheimer-Classifier-Demo", repo_type="dataset", subfolder="preprocessed", filename = img_path + ".nii.gz"))
|
107 |
new_data = transforms(img_array)
|
108 |
new_data_tensor = torch.from_numpy(np.array([new_data]))
|
109 |
|
@@ -145,7 +145,7 @@ with st.container():
|
|
145 |
st.pyplot()
|
146 |
|
147 |
else:
|
148 |
-
raw_image = nib.load(hf_hub_download(repo_id= "rootstrap/Alzheimer-Classifier-Demo", repo_type="dataset", subfolder="raw", filename = img_path + ".nii"))
|
149 |
|
150 |
bounds_raw = plotting.find_cuts._get_auto_mask_bounds(raw_image)
|
151 |
|
|
|
80 |
if st.session_state.clicked_pp:
|
81 |
if st.session_state.clicked_pred == False:
|
82 |
with st.container():
|
83 |
+
pred_image = nib.load(hf_hub_download(repo_id= "rootstrap-org/Alzheimer-Classifier-Demo", repo_type="dataset", subfolder="preprocessed", filename = img_path + ".nii.gz"))
|
84 |
|
85 |
bounds_pred = plotting.find_cuts._get_auto_mask_bounds(pred_image)
|
86 |
|
|
|
94 |
|
95 |
else:
|
96 |
with st.container():
|
97 |
+
pred_image = nib.load(hf_hub_download(repo_id= "rootstrap-org/Alzheimer-Classifier-Demo", repo_type="dataset", subfolder="preprocessed", filename = img_path + ".nii.gz"))
|
98 |
|
99 |
bounds_pred = plotting.find_cuts._get_auto_mask_bounds(pred_image)
|
100 |
|
|
|
103 |
x_value_pred = st.sidebar.slider('Move the slider to adjust the sagittal cut ', bounds_pred[0][0], bounds_pred[0][1], mean([bounds_pred[0][0], bounds_pred[0][1]]))
|
104 |
z_value_pred = st.sidebar.slider('Move the slider to adjust the axial cut ', bounds_pred[2][0], bounds_pred[2][1], mean([bounds_pred[2][0], bounds_pred[2][1]]))
|
105 |
|
106 |
+
img_array = load_img(hf_hub_download(repo_id= "rootstrap-org/Alzheimer-Classifier-Demo", repo_type="dataset", subfolder="preprocessed", filename = img_path + ".nii.gz"))
|
107 |
new_data = transforms(img_array)
|
108 |
new_data_tensor = torch.from_numpy(np.array([new_data]))
|
109 |
|
|
|
145 |
st.pyplot()
|
146 |
|
147 |
else:
|
148 |
+
raw_image = nib.load(hf_hub_download(repo_id= "rootstrap-org/Alzheimer-Classifier-Demo", repo_type="dataset", subfolder="raw", filename = img_path + ".nii"))
|
149 |
|
150 |
bounds_raw = plotting.find_cuts._get_auto_mask_bounds(raw_image)
|
151 |
|