Thomas Lucchetta commited on
Commit
c7d03f1
·
unverified ·
1 Parent(s): 78cda2f

Add files via upload

Browse files
Files changed (1) hide show
  1. app.py +5 -8
app.py CHANGED
@@ -18,7 +18,7 @@ from statistics import mean
18
 
19
  from constants import CLASSES
20
  from model.download_model import load_model
21
- from download_pictures import download_images
22
 
23
  #SET PAGE TITLE
24
  st.set_page_config(page_title = "Alzheimer Classifier", page_icon = ":brain:", layout = "wide")
@@ -26,9 +26,6 @@ st.set_page_config(page_title = "Alzheimer Classifier", page_icon = ":brain:", l
26
  #LOAD MODEL
27
  model = load_model()
28
 
29
- #LOAD IMAGES
30
- download_images()
31
-
32
  #SET NIFTI FILE LOADING AND PROCESSING CONFIGURATIONS
33
  transforms = Compose([
34
  ScaleIntensity(),
@@ -91,7 +88,7 @@ with st.container():
91
  if st.session_state.clicked_pp:
92
  if st.session_state.clicked_pred == False:
93
  with st.container():
94
- pred_image = nib.load(os.path.join("images/preprocessed", img_path + ".nii.gz"))
95
 
96
  bounds_pred = plotting.find_cuts._get_auto_mask_bounds(pred_image)
97
 
@@ -105,7 +102,7 @@ with st.container():
105
 
106
  else:
107
  with st.container():
108
- pred_image = nib.load(os.path.join("images/preprocessed", img_path + ".nii.gz"))
109
 
110
  bounds_pred = plotting.find_cuts._get_auto_mask_bounds(pred_image)
111
 
@@ -114,7 +111,7 @@ with st.container():
114
  x_value_pred = st.sidebar.slider('Move the slider to adjust the sagittal cut ', bounds_pred[0][0], bounds_pred[0][1], mean([bounds_pred[0][0], bounds_pred[0][1]]))
115
  z_value_pred = st.sidebar.slider('Move the slider to adjust the axial cut ', bounds_pred[2][0], bounds_pred[2][1], mean([bounds_pred[2][0], bounds_pred[2][1]]))
116
 
117
- img_array = load_img(os.path.join("images/preprocessed", img_path + ".nii.gz"))
118
  new_data = transforms(img_array)
119
  new_data_tensor = torch.from_numpy(np.array([new_data]))
120
 
@@ -156,7 +153,7 @@ with st.container():
156
  st.pyplot()
157
 
158
  else:
159
- raw_image = nib.load(os.path.join("images/raw", img_path + ".nii"))
160
 
161
  bounds_raw = plotting.find_cuts._get_auto_mask_bounds(raw_image)
162
 
 
18
 
19
  from constants import CLASSES
20
  from model.download_model import load_model
21
+ from huggingface_hub import hf_hub_download
22
 
23
  #SET PAGE TITLE
24
  st.set_page_config(page_title = "Alzheimer Classifier", page_icon = ":brain:", layout = "wide")
 
26
  #LOAD MODEL
27
  model = load_model()
28
 
 
 
 
29
  #SET NIFTI FILE LOADING AND PROCESSING CONFIGURATIONS
30
  transforms = Compose([
31
  ScaleIntensity(),
 
88
  if st.session_state.clicked_pp:
89
  if st.session_state.clicked_pred == False:
90
  with st.container():
91
+ pred_image = nib.load(hf_hub_download(repo_type="dataset", subfolder="preprocessed", filename = img_path + ".nii.gz"))
92
 
93
  bounds_pred = plotting.find_cuts._get_auto_mask_bounds(pred_image)
94
 
 
102
 
103
  else:
104
  with st.container():
105
+ pred_image = nib.load(hf_hub_download(repo_type="dataset", subfolder="preprocessed", filename = img_path + ".nii.gz"))
106
 
107
  bounds_pred = plotting.find_cuts._get_auto_mask_bounds(pred_image)
108
 
 
111
  x_value_pred = st.sidebar.slider('Move the slider to adjust the sagittal cut ', bounds_pred[0][0], bounds_pred[0][1], mean([bounds_pred[0][0], bounds_pred[0][1]]))
112
  z_value_pred = st.sidebar.slider('Move the slider to adjust the axial cut ', bounds_pred[2][0], bounds_pred[2][1], mean([bounds_pred[2][0], bounds_pred[2][1]]))
113
 
114
+ img_array = load_img(hf_hub_download(repo_type="dataset", subfolder="preprocessed", filename = img_path + ".nii.gz"))
115
  new_data = transforms(img_array)
116
  new_data_tensor = torch.from_numpy(np.array([new_data]))
117
 
 
153
  st.pyplot()
154
 
155
  else:
156
+ raw_image = nib.load(hf_hub_download(repo_type="dataset", subfolder="raw", filename = img_path + ".nii"))
157
 
158
  bounds_raw = plotting.find_cuts._get_auto_mask_bounds(raw_image)
159