Spaces:
Sleeping
Sleeping
File size: 17,854 Bytes
fa84113 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 |
""" RetinaNet / EfficientDet Anchor Gen
Adapted for PyTorch from Tensorflow impl at
https://github.com/google/automl/blob/6f6694cec1a48cdb33d5d1551a2d5db8ad227798/efficientdet/anchors.py
Hacked together by Ross Wightman, original copyright below
"""
# Copyright 2020 Google Research. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Anchor definition.
This module is borrowed from TPU RetinaNet implementation:
https://github.com/tensorflow/tpu/blob/master/models/official/retinanet/anchors.py
"""
from typing import Optional, Tuple, Sequence
import numpy as np
import torch
import torch.nn as nn
#import torchvision.ops.boxes as tvb
from torchvision.ops.boxes import batched_nms, remove_small_boxes
from typing import List
from effdet.object_detection import ArgMaxMatcher, FasterRcnnBoxCoder, BoxList, IouSimilarity, TargetAssigner
from .soft_nms import batched_soft_nms
# The minimum score to consider a logit for identifying detections.
MIN_CLASS_SCORE = -5.0
# The score for a dummy detection
_DUMMY_DETECTION_SCORE = -1e5
# The maximum number of (anchor,class) pairs to keep for non-max suppression.
MAX_DETECTION_POINTS = 5000
# The maximum number of detections per image.
MAX_DETECTIONS_PER_IMAGE = 100
def decode_box_outputs(rel_codes, anchors, output_xyxy: bool=False):
"""Transforms relative regression coordinates to absolute positions.
Network predictions are normalized and relative to a given anchor; this
reverses the transformation and outputs absolute coordinates for the input image.
Args:
rel_codes: box regression targets.
anchors: anchors on all feature levels.
Returns:
outputs: bounding boxes.
"""
ycenter_a = (anchors[:, 0] + anchors[:, 2]) / 2
xcenter_a = (anchors[:, 1] + anchors[:, 3]) / 2
ha = anchors[:, 2] - anchors[:, 0]
wa = anchors[:, 3] - anchors[:, 1]
ty, tx, th, tw = rel_codes.unbind(dim=1)
w = torch.exp(tw) * wa
h = torch.exp(th) * ha
ycenter = ty * ha + ycenter_a
xcenter = tx * wa + xcenter_a
ymin = ycenter - h / 2.
xmin = xcenter - w / 2.
ymax = ycenter + h / 2.
xmax = xcenter + w / 2.
if output_xyxy:
out = torch.stack([xmin, ymin, xmax, ymax], dim=1)
else:
out = torch.stack([ymin, xmin, ymax, xmax], dim=1)
return out
def clip_boxes_xyxy(boxes: torch.Tensor, size: torch.Tensor):
boxes = boxes.clamp(min=0)
size = torch.cat([size, size], dim=0)
boxes = boxes.min(size)
return boxes
def generate_detections(
cls_outputs, box_outputs, anchor_boxes, indices, classes,
img_scale: Optional[torch.Tensor], img_size: Optional[torch.Tensor],
max_det_per_image: int = MAX_DETECTIONS_PER_IMAGE, soft_nms: bool = False):
"""Generates detections with RetinaNet model outputs and anchors.
Args:
cls_outputs: a torch tensor with shape [N, 1], which has the highest class
scores on all feature levels. The N is the number of selected
top-K total anchors on all levels. (k being MAX_DETECTION_POINTS)
box_outputs: a torch tensor with shape [N, 4], which stacks box regression
outputs on all feature levels. The N is the number of selected top-k
total anchors on all levels. (k being MAX_DETECTION_POINTS)
anchor_boxes: a torch tensor with shape [N, 4], which stacks anchors on all
feature levels. The N is the number of selected top-k total anchors on all levels.
indices: a torch tensor with shape [N], which is the indices from top-k selection.
classes: a torch tensor with shape [N], which represents the class
prediction on all selected anchors from top-k selection.
img_scale: a float tensor representing the scale between original image
and input image for the detector. It is used to rescale detections for
evaluating with the original groundtruth annotations.
max_det_per_image: an int constant, added as argument to make torchscript happy
Returns:
detections: detection results in a tensor with shape [MAX_DETECTION_POINTS, 6],
each row representing [x_min, y_min, x_max, y_max, score, class]
"""
assert box_outputs.shape[-1] == 4
assert anchor_boxes.shape[-1] == 4
assert cls_outputs.shape[-1] == 1
anchor_boxes = anchor_boxes[indices, :]
# Appply bounding box regression to anchors, boxes are converted to xyxy
# here since PyTorch NMS expects them in that form.
boxes = decode_box_outputs(box_outputs.float(), anchor_boxes, output_xyxy=True)
if img_scale is not None and img_size is not None:
boxes = clip_boxes_xyxy(boxes, img_size / img_scale) # clip before NMS better?
scores = cls_outputs.sigmoid().squeeze(1).float()
if soft_nms:
top_detection_idx, soft_scores = batched_soft_nms(
boxes, scores, classes, method_gaussian=True, iou_threshold=0.3, score_threshold=.001)
scores[top_detection_idx] = soft_scores
else:
top_detection_idx = batched_nms(boxes, scores, classes, iou_threshold=0.5)
# keep only topk scoring predictions
top_detection_idx = top_detection_idx[:max_det_per_image]
boxes = boxes[top_detection_idx]
scores = scores[top_detection_idx, None]
classes = classes[top_detection_idx, None] + 1 # back to class idx with background class = 0
if img_scale is not None:
boxes = boxes * img_scale
# FIXME add option to convert boxes back to yxyx? Otherwise must be handled downstream if
# that is the preferred output format.
# stack em and pad out to MAX_DETECTIONS_PER_IMAGE if necessary
num_det = len(top_detection_idx)
detections = torch.cat([boxes, scores, classes.float()], dim=1)
if num_det < max_det_per_image:
detections = torch.cat([
detections,
torch.zeros((max_det_per_image - num_det, 6), device=detections.device, dtype=detections.dtype)
], dim=0)
return detections
def get_feat_sizes(image_size: Tuple[int, int], max_level: int):
"""Get feat widths and heights for all levels.
Args:
image_size: a tuple (H, W)
max_level: maximum feature level.
Returns:
feat_sizes: a list of tuples (height, width) for each level.
"""
feat_size = image_size
feat_sizes = [feat_size]
for _ in range(1, max_level + 1):
feat_size = ((feat_size[0] - 1) // 2 + 1, (feat_size[1] - 1) // 2 + 1)
feat_sizes.append(feat_size)
return feat_sizes
class Anchors(nn.Module):
"""RetinaNet Anchors class."""
def __init__(self, min_level, max_level, num_scales, aspect_ratios, anchor_scale, image_size: Tuple[int, int]):
"""Constructs multiscale RetinaNet anchors.
Args:
min_level: integer number of minimum level of the output feature pyramid.
max_level: integer number of maximum level of the output feature pyramid.
num_scales: integer number representing intermediate scales added
on each level. For instances, num_scales=2 adds two additional
anchor scales [2^0, 2^0.5] on each level.
aspect_ratios: list of tuples representing the aspect ratio anchors added
on each level. For instances, aspect_ratios =
[(1, 1), (1.4, 0.7), (0.7, 1.4)] adds three anchors on each level.
anchor_scale: float number representing the scale of size of the base
anchor to the feature stride 2^level.
image_size: Sequence specifying input image size of model (H, W).
The image_size should be divided by the largest feature stride 2^max_level.
"""
super(Anchors, self).__init__()
self.min_level = min_level
self.max_level = max_level
self.num_scales = num_scales
self.aspect_ratios = aspect_ratios
if isinstance(anchor_scale, Sequence):
assert len(anchor_scale) == max_level - min_level + 1
self.anchor_scales = anchor_scale
else:
self.anchor_scales = [anchor_scale] * (max_level - min_level + 1)
assert isinstance(image_size, Sequence) and len(image_size) == 2
# FIXME this restriction can likely be relaxed with some additional changes
assert image_size[0] % 2 ** max_level == 0, 'Image size must be divisible by 2 ** max_level (128)'
assert image_size[1] % 2 ** max_level == 0, 'Image size must be divisible by 2 ** max_level (128)'
self.image_size = tuple(image_size)
self.feat_sizes = get_feat_sizes(image_size, max_level)
self.config = self._generate_configs()
self.register_buffer('boxes', self._generate_boxes())
@classmethod
def from_config(cls, config):
return cls(
config.min_level, config.max_level,
config.num_scales, config.aspect_ratios,
config.anchor_scale, config.image_size)
def _generate_configs(self):
"""Generate configurations of anchor boxes."""
anchor_configs = {}
feat_sizes = self.feat_sizes
for level in range(self.min_level, self.max_level + 1):
anchor_configs[level] = []
for scale_octave in range(self.num_scales):
for aspect in self.aspect_ratios:
anchor_configs[level].append(
((feat_sizes[0][0] // feat_sizes[level][0],
feat_sizes[0][1] // feat_sizes[level][1]),
scale_octave / float(self.num_scales), aspect,
self.anchor_scales[level - self.min_level]))
return anchor_configs
def _generate_boxes(self):
"""Generates multiscale anchor boxes."""
boxes_all = []
for _, configs in self.config.items():
boxes_level = []
for config in configs:
stride, octave_scale, aspect, anchor_scale = config
base_anchor_size_x = anchor_scale * stride[1] * 2 ** octave_scale
base_anchor_size_y = anchor_scale * stride[0] * 2 ** octave_scale
if isinstance(aspect, Sequence):
aspect_x = aspect[0]
aspect_y = aspect[1]
else:
aspect_x = np.sqrt(aspect)
aspect_y = 1.0 / aspect_x
anchor_size_x_2 = base_anchor_size_x * aspect_x / 2.0
anchor_size_y_2 = base_anchor_size_y * aspect_y / 2.0
x = np.arange(stride[1] / 2, self.image_size[1], stride[1])
y = np.arange(stride[0] / 2, self.image_size[0], stride[0])
xv, yv = np.meshgrid(x, y)
xv = xv.reshape(-1)
yv = yv.reshape(-1)
boxes = np.vstack((yv - anchor_size_y_2, xv - anchor_size_x_2,
yv + anchor_size_y_2, xv + anchor_size_x_2))
boxes = np.swapaxes(boxes, 0, 1)
boxes_level.append(np.expand_dims(boxes, axis=1))
# concat anchors on the same level to the reshape NxAx4
boxes_level = np.concatenate(boxes_level, axis=1)
boxes_all.append(boxes_level.reshape([-1, 4]))
anchor_boxes = np.vstack(boxes_all)
anchor_boxes = torch.from_numpy(anchor_boxes).float()
return anchor_boxes
def get_anchors_per_location(self):
return self.num_scales * len(self.aspect_ratios)
class AnchorLabeler(object):
"""Labeler for multiscale anchor boxes.
"""
def __init__(self, anchors, num_classes: int, match_threshold: float = 0.5):
"""Constructs anchor labeler to assign labels to anchors.
Args:
anchors: an instance of class Anchors.
num_classes: integer number representing number of classes in the dataset.
match_threshold: float number between 0 and 1 representing the threshold
to assign positive labels for anchors.
"""
similarity_calc = IouSimilarity()
matcher = ArgMaxMatcher(
match_threshold,
unmatched_threshold=match_threshold,
negatives_lower_than_unmatched=True,
force_match_for_each_row=True)
box_coder = FasterRcnnBoxCoder()
self.target_assigner = TargetAssigner(similarity_calc, matcher, box_coder)
self.anchors = anchors
self.match_threshold = match_threshold
self.num_classes = num_classes
self.indices_cache = {}
def label_anchors(self, gt_boxes, gt_classes, filter_valid=True):
"""Labels anchors with ground truth inputs.
Args:
gt_boxes: A float tensor with shape [N, 4] representing groundtruth boxes.
For each row, it stores [y0, x0, y1, x1] for four corners of a box.
gt_classes: A integer tensor with shape [N, 1] representing groundtruth classes.
filter_valid: Filter out any boxes w/ gt class <= -1 before assigning
Returns:
cls_targets_dict: ordered dictionary with keys [min_level, min_level+1, ..., max_level].
The values are tensor with shape [height_l, width_l, num_anchors]. The height_l and width_l
represent the dimension of class logits at l-th level.
box_targets_dict: ordered dictionary with keys [min_level, min_level+1, ..., max_level].
The values are tensor with shape [height_l, width_l, num_anchors * 4]. The height_l and
width_l represent the dimension of bounding box regression output at l-th level.
num_positives: scalar tensor storing number of positives in an image.
"""
cls_targets_out = []
box_targets_out = []
if filter_valid:
valid_idx = gt_classes > -1 # filter gt targets w/ label <= -1
gt_boxes = gt_boxes[valid_idx]
gt_classes = gt_classes[valid_idx]
cls_targets, box_targets, matches = self.target_assigner.assign(
BoxList(self.anchors.boxes), BoxList(gt_boxes), gt_classes)
# class labels start from 1 and the background class = -1
cls_targets = (cls_targets - 1).long()
# Unpack labels.
"""Unpacks an array of cls/box into multiple scales."""
count = 0
for level in range(self.anchors.min_level, self.anchors.max_level + 1):
feat_size = self.anchors.feat_sizes[level]
steps = feat_size[0] * feat_size[1] * self.anchors.get_anchors_per_location()
cls_targets_out.append(cls_targets[count:count + steps].view([feat_size[0], feat_size[1], -1]))
box_targets_out.append(box_targets[count:count + steps].view([feat_size[0], feat_size[1], -1]))
count += steps
num_positives = (matches.match_results > -1).float().sum()
return cls_targets_out, box_targets_out, num_positives
def batch_label_anchors(self, gt_boxes, gt_classes, filter_valid=True):
batch_size = len(gt_boxes)
assert batch_size == len(gt_classes)
num_levels = self.anchors.max_level - self.anchors.min_level + 1
cls_targets_out = [[] for _ in range(num_levels)]
box_targets_out = [[] for _ in range(num_levels)]
num_positives_out = []
anchor_box_list = BoxList(self.anchors.boxes)
for i in range(batch_size):
last_sample = i == batch_size - 1
if filter_valid:
valid_idx = gt_classes[i] > -1 # filter gt targets w/ label <= -1
gt_box_list = BoxList(gt_boxes[i][valid_idx])
gt_class_i = gt_classes[i][valid_idx]
else:
gt_box_list = BoxList(gt_boxes[i])
gt_class_i = gt_classes[i]
cls_targets, box_targets, matches = self.target_assigner.assign(anchor_box_list, gt_box_list, gt_class_i)
# class labels start from 1 and the background class = -1
cls_targets = (cls_targets - 1).long()
# Unpack labels.
"""Unpacks an array of cls/box into multiple scales."""
count = 0
for level in range(self.anchors.min_level, self.anchors.max_level + 1):
level_idx = level - self.anchors.min_level
feat_size = self.anchors.feat_sizes[level]
steps = feat_size[0] * feat_size[1] * self.anchors.get_anchors_per_location()
cls_targets_out[level_idx].append(
cls_targets[count:count + steps].view([feat_size[0], feat_size[1], -1]))
box_targets_out[level_idx].append(
box_targets[count:count + steps].view([feat_size[0], feat_size[1], -1]))
count += steps
if last_sample:
cls_targets_out[level_idx] = torch.stack(cls_targets_out[level_idx])
box_targets_out[level_idx] = torch.stack(box_targets_out[level_idx])
num_positives_out.append((matches.match_results > -1).float().sum())
if last_sample:
num_positives_out = torch.stack(num_positives_out)
return cls_targets_out, box_targets_out, num_positives_out
|